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ﬁ\l umerical modeling of radiative properties oh
multicharged-ion plasmas using DTA-approach

A numerical model Spectr-DTA based on detailed description
of bound-bound and bound-free radiation/ absorption spectra
(Detailed Term Accounting: DTA-approach) 1s developed to

calculate radiative properties (spectral emissivities & opacities)
of multicharged-ion plasmas

® to analyze & model radiation/absorption spectra of dense
plasmas being measured 1n laser-plasma experiments;

® to benchmark approximate statistic methods for
simulating radiative properties of dense plasmas.
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gpectr-DTA model to calculate spectral opacities B

e lonization balance & ion-state populations are found from

® modified ionization-equilibrium Saha equations for
superconfigurations allowing for plasma-density & electron
degeneracy effects solved with the superconfiguration Spectr-
STA model + Boltzmann distribution over detailed terms (LTE);

® calculations with other collisional-radiative models (NLTE).

e Spectr-DTA uses pre-calculated atomic data for bound-bound
(atomic-state properties, multipole transition matrix elements) &
bound-free radiative transitions (photoionization cross-sections for
ground + excited levels, if necessary) contributing to the spectral
range of interest.

e Voigt lineshapes for transitions include Doppler and homogeneous
(autoionization, radiative, & electron-collisional) broadening.

e Detailed Stark-broadened lineshapes may also be employed, if
\necessary & reasonable (more expensive).




/Spectr-DTA model to calculate spectral opacities®

\_

Generalized theoretical model LineDM for calculating local

line radiation/ absorption spectra for arbitrary multielectron
ions 1n plasmas [P.A. Loboda et al. LPB 18, 275 (2000) i:

consistent implementation of the density-matrix approach;
arbitrary bound-bound transitions;

most important line-broadening mechanisms: ion quasi-static &
electron Stark broadening, natural, autoionization, and
Doppler broadening;

enables to describe the effects of plasma microfield and
radiation field on the population Kinetics of ionic states

(individual calculations).
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Input atomic data for Spectr-DTA

e Spectroscopic data are calculated for detailed radiative
transitions between relativistic 1onic terms with

® an improved version of the GRASP? package (up to 2500
detailed terms and 3x10° transitions in a single GRASP? run)

® parametric-potential relativistic FAC code (somewhat less
accurate than GRASP?, but easier to run)

e Autolonization widths, photoionization cross-sections
are calculated using the distorted-wave approach with
the FAC code (1f necessary).
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LLNL experimental data for near-LTE Al transmission at
T=58%4 eV, p= 0.02+0.007 g/cm? vs. DTA-model calculations (1)

T(e) Al, A;=50 nm, T=58 eV, p=0.02 g/lcm?
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/LLNL experimental data for near-LTE Al transmission at T=58+4 eV,\
£=10.02+£0.007 g/cm? vs. DTA-model calculations (2)

T(e) Al, A,=50 nm, p=0.02 glcm?
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Iskra-5 experiments for near-LTE Al transmission\
at RENC VNIIEF

One-sided x-ray irradiation experiments with Al samples A;=0.9 & 0.1 pm
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Measured near-LTE transmission of Al radiatively heated by laser-driven “illuminator”
hohlraum-type targets in 4-beam Iskra-5 experiment (2005) vs. Spectr-DTA calculations

T=60 eV, p = 0.05 g/cm?

)

T(e) Al, 4,70.9 um, p=0.05 glcm?®.
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Measured near-LTE transmission of Al radiatively heated by laser-driven “illuminator”
hohlraum-type targets in 4-beam Iskra-S experiment (April, 2007) vs. Spectr-DTA calculations

T(e) Al, A;=0.1 pm
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Iskra-5 experiments for near-LTE Al
transmission at RENC VNIIEF

Inside-case x-ray irradiation experiment with Al sample Ay=0.1 pm

~
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Measured near-LTE transmission of Al radiatively heated by laser-driven “illuminator”
hohlraum-type targets in 4-beam Iskra-5 experiment (April, 2007) vs. Spectr-DTA

calculations at T=30 eV, p = 0.03 g/cm?
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/Summary \

e The developed Spectr-DTA model based on detailed
description of bound-bound and bound-free radiation/
absorption spectra (DTA-approach) enabled to calculate
spectral opacities of near-LTE Al plasmas at the region of Al
K-shell line absorption (¢= 1.5 — 1.64 keV) for analyzing the
data of x-ray transmission laser experiments performed on
the Iskra-5 laser facility.

e Plasma conditions of x-ray heated Al samples were evaluated
to be in the range of T=30-60¢V, p=0.03 - 0.1 g/cm’

\_ /

13




	Numerical modeling of radiative properties of multicharged-ion plasmas using DTA-approach
	Spectr-DTA model to calculate spectral opacities (1)
	Spectr-DTA model to calculate spectral opacities(2)
	Input atomic data for Spectr-DTA
	LLNL experimental data for near-LTE Al transmission at T=584 eV,  = 0.020.007 g/cm3 vs. DTA-model calculations (1)
	LLNL experimental data for near-LTE Al transmission at T=584 eV,  = 0.020.007 g/cm3 vs. DTA-model calculations (2)
	Iskra-5 experiments for near-LTE Al transmission at RFNC VNIIEF 
	Measured near-LTE transmission of Al radiatively heated by laser-driven “illuminator” hohlraum-type targets in 4-beam Iskra-5 
	Measured near-LTE transmission of Al radiatively heated by laser-driven “illuminator” hohlraum-type targets in 4-beam Iskra-5 
	Iskra-5 experiments for near-LTE Al transmission at RFNC VNIIEF 
	Measured near-LTE transmission of Al radiatively heated by laser-driven “illuminator” hohlraum-type targets in 4-beam Iskra-5 
	Summary

