Научно-координационная сессия «Исследование неидеальной плазмы» (26 ноября 2008, Президиум РАН, пл. Гагарина 32а, Москва)

МЕТАЛЛИЗАЦИЯ ГИДРИДА АЛЮМИНИЯ АІН₃ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ СТУПЕНЧАТОГО УДАРНОГО СЖАТИЯ

<u>А.М. Молодец</u>¹, Д.В. Шахрай¹, А.Г. Храпак²

-1 Институт проблем химической физики, РАН, Черноголовка

-2 Объединённый институт высоких температур, РАН, Москва

Черноголовка-Москва-2008

МЕТАЛЛИЗАЦИЯ «ХИМИЧЕСКИ СЖАТОГО» ВОДОРОДА в ГИДРИДЕ АЛЮМИНИЯ АІН₃

N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 2004.

C. J. Pickard andR. J. Needs, Phys.Rev. B 76, 441142007.

I. Goncharenko et al Phys. Rev. Lett. **100**, 045504 2008.

СОДЕРЖАНИЕ ДОКЛАДА

МЕТОДИКИ

- Первичная экспериментальная информация
- Используемое уравнение состояния
- Математическое моделирование

РЕЗУЛЬТАТЫ

- Полупроводниковый механизм проводимости алана АІН₃ в ударных волнах
- Проводимость АІН₃ в области металлизации Н₂ в ударных волнах
- Металлизация ударно сжатого AIH₃ может быть истолкована в рамках представлений о так называемой «диэлектрической катастрофе».

ПЕРВИЧНАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ИНФОРМАЦИЯ

УРАВНЕНИЕ СОСТОЯНИЯ РЕКОНСТРУИРУЕТСЯ по ИЗОТЕРМЕ ВЫСОКОГО ДАВЛЕНИЯ

JaC

20

30

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ AIH₃

ПОЛУПРОВОДНИКОВЫЙ МЕХАНИЗМ ПРОВОДИМОСТИ

ИЗОТЕРМЫ, ФАЗОВЫЕ ТРАЕКТОРИИ УДАРНОГО СЖАТИЯ АЛАНА и парциальный объём водорода V_н

ПРОВОДИМОСТЬ АІН₃ в области металлизации Н₂ ПРИ УДАРНОМ СЖАТИИ

«ДИЭЛЕКТРИЧЕСКАЯ КАТАСТРОФА» И ПЕРЕХОД ДИЭЛЕКТРИК МЕТАЛЛ В АН, ПРИ УДАРНОМ СЖАТИИ

I. Формула Клаузиуса-Моссотти для диэлектрической проницаемости диэлектрика ε(*n*) (*b*-индекс рефракции, α-поляризуемость):

ть): Диэлектрики *b* < 1, Металлы *b* > 1.

II. Критерий Херцфельда:

металлизация происходит при $b \to 1$ или $\varepsilon \to \infty$ («диэлектрическая катастрофа»).

III. В конденсированной фазе $AlH_3 \rightarrow Al^{3+} + 3H^-$:

$$\alpha_{\text{AlH}_3} \cong \alpha_{\text{Al}^{3+}} + 3\alpha_{\text{H}^-} \cong 3\alpha_{\text{H}^-}$$

По известным значениям ε с помощью формулы Клаузиуса-Моссотти определяем $\alpha_{\rm H}$ -.

IV. Согласно критерию Херцфельда и нашей оценке α

$$\alpha_{\text{AlH}_3} \cong 3\alpha_{\text{H}^-} \cong 28.8 \text{ a.e.}$$

металлизация должна наступать при $\rho = 2.8 \ r \cdot cm^{-3}$, что хорошо согласуется с экспериментом.

$$\epsilon$$
 α_{H^-} LiH4.2812.4NaH3.0318.4MgH_23.9011.9AlH_34.439.6

 $\varepsilon = \frac{1+2b}{1-b}, \quad b = \frac{4\pi}{3}\alpha n$

ВЫВОДЫ

- В области давлений ≈60 ГПа и температур ≈1000 К гидрид алюминия АІН₃ (алан) обладает полупроводниковым механизмом электропроводности.
- В области высоких давлений (до 90 ГПа) и температур (до 2000 К) объёмнотемпературная зависимость проводимости алана АІН₃ сопоставима с металлической электропроводностью водорода Н₂.
- Металлизация ударно сжатого AIH₃ может быть истолкована в рамках представлений о так называемой «диэлектрической катастрофе» с учетом существенного различия состояний алана в молекулярной и конденсированной фазах.

Работа выполнена при поддержке программы Президиума РАН «Исследование вещества в экстремальных условиях» Авторы благодарны В.Ф. Дегтярёвой и Е.М. Апфельбауму за плодотворные обсуждения

•

ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА ДЛЯ ОБРАЗЦОВ АІН₃ ПРИ УДАРНОМ СЖАТИИ

Измерительная ячейка (a) и эквивалентная электрическая схема датчика проводимости образца (б). a: 1 –дискообразный образец толщиной $h_0 \approx 0.5$ mm и эффективными размерами $m=3\div5$ мм и $n=6\div8$ мм, 2 – медные токовводы, $R_{\rm sh}$ – шунтирующее сопротивление, б: $R_{\rm x}$ – сопротивление образца, $L_{\rm x}$ - inductance of the sample, $R_{\rm sh}$ - сопротивление шунтирующего сопротивления, $L_{\rm sh}$ - inductance of the shunt resistor, $U_{\rm x}$ – напряжение на медных токовводах. **С** – константа ячейки.

РЕКОНСТРУКЦИЯ УРАВНЕНИЙ СОСТОЯНИЯ Sc-I и Sc-II

•P_S=P_S(V), E_S=E_S(V) –pressure and energy on isotherm; •S₁, S₂, υ_S – fitting parameters of isotherm •E_m - shift E_S(V) Sc-II regard to E_S(V) Sc-I; •x₀ = V₀/ υ_S , V₀=V(P₀,T₀); •P₀=1atm, T₀=298 K.

A.M. Molodets, D.V. Shakhray, A.A. Golyshev, and V.E. Fortov "Electrophysical and thermodynamic properties of shock compressed incommensurate phase Sc-II"// Phys. Rev. B. 2007. V75. N22, p 224111

ФАЗОВАЯ ТРАЕКТОРИЯ АІН₃ в Т-Р координатах

РАБОЧАЯ ОБЛАСТЬ на ФАЗОВОЙ ДИАГРАММЕ ТИПИЧНОГО ТВЁРДОГО ТЕЛА

Наше рабочее пространство расположено между ударной адиабатой однократного сжатия и изотермой высокого давления. В эксперименте мы попадаем в неё серией последовательных ударных волн за времена 0,1-1 микросекунд. Это время достаточно велико, чтобы вещество в конечном состоянии считать находящимся в термодинамическом равновесии и использовать обычные уравнения состояния

ОПРЕДЕЛЯЮЩИЕ СООТНОШЕНИЯ

Эта формула для $\theta(V)$ соответствует объёмной зависимости коэффициента Грюнайзена $\gamma=2/3+2x/(1-x)$

A.M. Molodets «Scaling law for high pressure isotherms of solids». // High Pressure Research. 2005. V.25, No 4. P. 267-276