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Chain of kinetics (1):(2):(3) initiated by pump 
fsLP

Pump fsLP (fsLP=femtosecond Laser Pulse, 
typ. 10-100 fs)

• e-i relaxation (e- absorb Fabs Te is higher than Ti e-

heat i=ions)
• Anisimov, Kapeliovich, Perel’man, JETP (1974).
• e- overheating begins approximately together with fsLP
• F = fluence : J/cm2 : fsLP energy surface density, abs = absorbed
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Pump fsLP (fsLP=femtosecond Laser Pulse, 
typ. 10-100 fs)

• e-i relaxation (e- absorb Fabs Te is higher than Ti e-

heat i=ions)

• Non-equilibrium melting with overheated crystal
• Equilibrium melting with well defined melting front
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Chain of kinetics (1):(2):(3) initiated by pump 
fsLP

Pump fsLP (fsLP=femtosecond Laser Pulse, 
typ. 10-100 fs)

• e-i relaxation (e- absorb Fabs Te is higher than Ti e-

heat i=ions)

• Non-equilibrium melting with overheated crystal
• Equilibrium melting with well defined melting front
• Cavitation in metastable stretched liquid
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• ei1-ei2: e-i thermal non-
equilibrium:     Te>>Ti
(ei2: 3-6 ps for Al, 15-30 ps for 
Au)

• Supersonic electron 
heat wave:                                
for Al in 3 ps the EHW 
propagates 100 nm. 
100nm/3ps=33km/s  
(Al) while the 
cs=5.5km/s

Fig. 1: The main processes in thin metal foil induced by femtosecond laser pulse (pump
fsLP) and measured by two backscattered probe pulses (from frontal and rear surfaces). The
diagram is based on our MD simulation12 of Aluminum foil under fsLP with absorbed

T e

pump
T i

(1)  t ~ 0.2 ps

pi - pressure

(2)  t ~ 3 ps

~20 nm

~100 nm

(3)  t ~ 20 ps

~50 nm

v

v ~ 1 km/s

nu
cl

ea
tio

n

probe

probe

probe

T i =T e

Sf

(4)  t ~ 70 ps

~100 nm

~0.5 km/s

ca
vi

ta
tio

n

probe

Se

melting front

~ 1 μm

S

(5)  t ~ 120 ps

~50 nm

~0.2 km/s
ab

la
te

d 
la

ye
r

probe
S

~100 nm

solidification
     front

spalled 
  layer

~0.2 km/s

p < 0

p > 0

p > 0

p < 0

p < 0

t

t = 0

τL

e-i (1)ei1 ei2

non-eq melting (2)

m1 m2

c1 c2

cavitation (3)

fr



• ei1-ei2
• The supersonic EHW:
• ,    
• ~ few fs,      ~ nm
• v = 2000 km/s, cs= 5.5 

km/s
• , 

•
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• ei1-ei2: e-i thermal 
non-equilibrium: 
Te>>Ti   (ei2: 3-6 ps for Al, 
15-30 ps for Au)

• m1: The beginning of 
non-eq melting 
depends on value of 
Fabs (m1 : 0.3-1
ps/Al, 1-5 ps/Au)

• m2: The end of the 
non-eq melting
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Initially supersonic electron Heat Wave
and Creation of thick heated Layer

• The pump fsLP at considered fluencies at early stages 
strongly overheats electrons above ions during the time 
interval teq. Very fast (Mach ~ 10,  cs teq << dT) electron 
heat conduction wave (EHC) propagates deep into bulk 
creating ~100 nm thick heated layer dT in Al target.
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e-i heating

sonic front

x = cs teq

x = dT

• The electron cooling by the 
electron-ion energy exchange 
heats ions – their temperature Ti
gradually rises, and at F ~ Fabl
and higher the Ti significantly 
overcomes melting temperature 
Tm(p) – an overheated solid 
appears and the non-equilibrium 
melting starts. The significant 
excess over Tm is possible 
because the heating is fast  and 
there is enough thermal energy in 
the electrons – Fabl is significantly 
higher than Fmelt – melting 
threshold



Heating the ion subsystem 
by energy transfer from hot electron subsystem

• This Figure 
illustrates 
how Ti 
increases in 
time

• Fabs = 65 mJ/cm2



• C1:     (nucleation in melt is called 
cavitation)

• P>0 versus P=0 v 
a density drop 

stretching P<0
• |P<0| = Pneg (Fabs),            

Pneg (Fabs)  propto Fabs

• If  Pneg > Pstrength of 

material nucleation
Fig. 1: The main processes in thin metal foil induced by femtosecond laser pulse (pump
fsLP) and measured by two backscattered probe pulses (from frontal and rear surfaces). The
diagram is based on our MD simulation12 of Aluminum foil under fsLP with absorbed

T e

pump
T i

(1)  t ~ 0.2 ps

pi - pressure

(2)  t ~ 3 ps

~20 nm

~100 nm

(3)  t ~ 20 ps

~50 nm

v

v ~ 1 km/s

nu
cl

ea
tio

n

probe

probe

probe

T i =T e

Sf

(4)  t ~ 70 ps

~100 nm

~0.5 km/s

ca
vi

ta
tio

n

probe

Se

melting front

~ 1 μm

S

(5)  t ~ 120 ps

~50 nm

~0.2 km/s
ab

la
te

d 
la

ye
r

probe
S

~100 nm

solidification
     front

spalled 
  layer

~0.2 km/s

p < 0

p > 0

p > 0

p < 0

p < 0

t

t = 0

τL

e-i (1)ei1 ei2

non-eq melting (2)

m1 m2

c1 c2

cavitation (3)

fr



• C1

• From C1 to 
C2
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C2 Nanorelief: transient and frozen
• Early stages: 2T, non-equilibrium melting
• Intermediate and late stages: equilibrium melting/solidification and 

cavitation
• New mechanism of nanorelief growth. Surface perturbations grow at an ideal 

crystal face = this is not amplification of initial perturbation. This is not 
interaction of laser EM wave with reflected surface EM wave. Scale of relief 
is defined by a heat penetration depth (not EM wavelength). Also this is not 
result of fine focusing                                         
a                                                               as in Ivanov, Zhigilei 2007 
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• Dependence on parameters: run-away before it is frozen 
or it is frozen before run-away (mention current position of 
melting front)

• Rephasing during melting: at the transient phase the 
surface bumps are above the bubbles, while during 
cooling and re-crystallization the bubbles are compressed  
- therefore bumps are above frozen jets

• Bubbles remains frozen under surface



MD simulation of laser ablation of 
Aluminum crystal film

The wide Al target with cross section LyxLz=122x14 nm2 heated up to the T0(0)=5 kK at the small 
heated depth dT =18.6 nm. The total simulation time is 153.5 ps.

0.1ps pump



Run-away of a cavitation layer, inflation of foam,
and cooling/solidification of the bottom layer of cavitation

foam
• Two-phase region may be simple or reach and  thick
• In the last case it breaks-up in the middle forming 1+2+3 parts: 
• Part 1 returns to the running away layer
• Part 2 converts into droplet-vapor ejecta
• Part 3 keeps its ties with the bottom of a crater + moves very slowly + may 

be solified with frozen bubbles or with frozen jets (compare with Vorobyev, 
Guo 2007)



Run-away of a cavitation layer, inflation of foam,
and cooling/solidification of the bottom layer of cavitation

foam



Model: 2Tgd + Helmholtz  / EOS

• P = Pi+Pe; Pi(rho,Ti), Ei(rho,Ti) are taken from 
Bushman, Lomonosov, Fortov EOS (1992), 
while for Pe(rho,Te), Ee(rho,Te) free electron 
Fermi model is used
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2Tgd+Helmholtz /heat conduction & 
collisions

• Heat conduction coefficient is
3.10
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• Index “1.3” is taken from quantum MD of Desjarlais, 2002.
• Collision frequencies for  kappa  in solid and liquid phases are

2

14
33

14

)/)(/(

)//(101.1

K933),/(102.4

FeFee

iii
liq
ei

i
sol
ei

TTEb

TCBTAT

TTT

κ
κν

ν

ν

=

++⋅=

=⋅=

• The expression A+B T+C/T approximates data from quantum 
MD simulation of Al (Recoules, Crocombette, 2005). 

• We use different values for coefficient  “b” in nuee for heat 
conduction (superscript “kappa”) and for epsilon (superscript 
“opt”)



2Tgd+Helmholtz /Optics

02 =+ FkFxx ε

• Computed rho(x,t), f(x,t), Te(x,t), Ti(x,t) instant profiles have been used for calculation of dielectric 
function epsilon(x,t). Here f is a volume fraction of liquid phase in mixture zone

• Profile epsilon(x,t) is necessary to solve Helmholtz equation for amplitude F of  probe fsLP
propagating normally to the target surface with wavevector k

• Helmholtz eqn. reflectivity R(t), phase 
Psi(t)

• Dielectric function is calculated as a sum 
of the Drude and band-band components
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2Tgd+Helmholtz  /Optics of mixtures
• There is a near surface layer of solid + liquid mixture at early stages of Al 

melting.  Skin layer depth of the target gradually changes from solid to liquid 
state composition passing the mixture state. This layer and its evolution 
influence probe reflection. Therefore it is necessary to include the mixture 
optical properties into epsilon profile used in the Helmholtz equation

• Scales of phase grains is much smaller than the probe wavelength, therefore 
mixture can be described by its averaged dielectric function

• where expressions for epsilonmix at small concentrations f<<1 or 1-f<<1 are taken 
from Landau and Lifshitz “Electrodynamics of continuous media”

• For solid-liquid case relative difference between epsilonsol and epsilonliq is 
rather small. In this case we can use another expression from the same 
book valid at arbitrary concentration
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• Comparison of these two expressions shows that they give similar results



Probing of optical Properties of 2T Al  (2T: 
Te=high:17kK, 43kK) 

• nuee absorption is included into dielectric function
• nuee –if measured- should give powerful diagnostic tool: it left wing follows 

Te(t), while the right one gives history of melting since umklapp does not 
operate in melt                             
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Probing of volume (supersonic) melting by phase 
measur-nts

• Above model and results for time history of 
reflection coefficient R(t) have been presented

• Reflection may be measured by different 
technique but the pump-probe interferometry
(PPI) has also advantage to measure phase 
Psi(t) of reflected probe wave. For Al difference 
in solid/melt R is small. Fortunately there is not 
large but measurable difference in phase. 

• This opens possibility                                          
to follow phase Psi(t)                                            
(solid to liquid) evolution                                     
with PPI



Heating of ion subsystem
and changes in phase composition: solid melt

• Te rises fast, Ti much slower
• Delay in melting due to thermal 

“inertia” of ions
• Overheated lattice, volume 

“supersonic” melting
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Kinetics of Melting and the Phase Shift 
Evolution

• Phase shift relative to the phase of reflected light before the pump 
(from cold Al) is shown

• Agreement between simulated and experimental reflection means 
that our results capture melting from beginning
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Depletion of 5d zone and its shrinking and shift 
down

with Te rise (lattice remains cold at t ~ 1 ps)
• Recoules et al., 2005 QM simulation
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Excitation of 5d electrons into 6s+6p 
zone

• Definition of chemical potential
• Definition of number of excited electrons
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Excitation of 5d electrons into 6s+6p zone
• Shrinking and shifting of 5d zone due to changes in PSP as Te increases.  

Similar to Recoules et al., PRL 2006. 
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Band structure and plasma frequency
is lost in very frequent e-e collisions?

• e-i seems weak as Ti is low                           
and lattice symmetry unchanged 

                              

• Therefore e-e should dominate
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10% in Z) on changes in band structure which seems large at 
the first glance
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Conclusion
• It is shown that in 2T Al nuee addition in absorption 

is less than usually supposed
• Differences in optical properties of solid and liquid 

phase in metals are small. Therefore 
measurements of melting by interferometric pump-
probe technique is not easy. These differences are 
much larger in the semiconductor case when liquid 
phase is metallic. In the presented work kinetics of 
melting has been followed by simulation and new 
experiments. It is shown that simulation describes 
situation

• Large difference between optical response of Al 
and Au to fsLP has been found

• New mechanism of nanorelief formation has been 
proposed. Scale of relief is of order of thermal 
penetration depth
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