Distribution of Plasma Parameter upon Electrical Wire Explosion

S. I. Tkachenko¹, V. M. Romanova², A. R. Mingaleev², A. E. Ter-Oganesyan², T. A. Shelkovenko², S. A. Pikuz²

 ¹Moscow Institute of Physics and Technology, 9, Institutskii per., Dolgoprudny, Moscow Region, 141700 Russia, svt@ihed.ras.ru;
 ²P.N. Lebedev Physical Institute of Russian Academy of Sciences, Leninsky Prospect 53, Moscow, 119991 Russia

Annual Moscow Workshop on the Non-ideal Plasma Physics (NPP-2008) 26 - 27 November 2008, Moscow

4-frame microchannel camera with 5-ns exposure duration, 10-ns interval between frames and maximum sensitivity in the ultraviolet range with photon's energy > 10 eV

Since upon using 2 µm My filter any image didn't been observed

 \mathcal{E} < 180 eV thus *T* < 30 eV

Time dependences of current upon wire explosion in vacuum

Time dependences of current and XRD signal upon wire explosion in vacuum $(U_0 = 20 \text{ kV}, l = 12 \text{ mm}, d = 25 \text{ µm})$

current, kA Ā current, intensity, arb.u 5 5 100 200 300 400 500 0 100 200 300 400 500 Ω time, ns time, ns

AI

W

Explosion of AI wire in vacuum

Densitograms of self radiation in UV range, shadow and schlieren- images

Densitograms of shadow and schlieren images upon explosion of W wire $U_0 = 20$ kV, l = 12 mm, d = 25 µm

Parameters of material

Al 160 ns – $d_{core} \sim 720 \ \mu m$ $v_{core} \sim 2.5 \times 10^5 \ cm/s$ $n \sim 7 \times 10^{19} \ cm^{-3}$ $T \sim 9 \times 10^3 \ K$ $(T_{cr} \sim 8 \times 10^3 \ K)$

160 ns – $d_{UV} \sim 1200 \ \mu m$ $v_{UV} \sim 2.5 \times 10^{6} \ cm/s$ $\epsilon_{UV} < 180 \ eV$

W

260 ns – $d_{core} \sim 130 \ \mu m$ $v_{core} \sim 2 \times 10^4 \ cm/s$ $n \sim 7 \times 10^{21} \ cm^{-3}$ $T \sim 8 \times 10^3 \ K$ $(T_{cr} \sim 14 \times 10^3 \ K)$

```
110 ns –

d_{UV} \sim 2000 \ \mu m

v_{UV} \sim 10^6 \ cm/s

\epsilon_{UV} < 180 \ eV
```

Comparison of images of regions radiating in ultraviolet range AI

400 µm Pinhole diameter

200 µm Pinhole diameter

Simulation results

numerical code: V.A. Gasilov, A.Yu. Krukovskii, 1990

Comparison of experimental and simulation data for explosion of 25- μ m W wire in vacuum

CONCLUSIONS

- there are different scenarios of breakdown development upon wire explosion;
- size of the region radiated in UV range (currentconducting) noticeably exceeds the size of the region occupied by the dense products under wire explosion in vacuum;
- experimental evidence of influence of light matter contaminating wire surface and some of the adsorbed gases on breakdown process was obtained;
- instabilities develop in the radiative region;
- more intense UV radiation was observed in the nearcathode region.

Thank you for your attention