Атомистическое моделирование двойного электрического слоя на границе углерод-электролит Ланкин А.В., Норман Г.Э., Стегайлов В.В.

СИ ИТЭС ОИВТ РАН, Москва

Molecular dynamics

U(r)

Научно-координационной сессии "Исследования неидеальной плазмы"

30 ноября 2009г., Москва

- 1. Введение
- 2. Постановка проблемы и метод расчёта
- 3. Двойной электрический слой в системе графит-электролит
- 4. Предельные ёмкостные характеристики системы графит-электролит
- 5. Выводы

СУПЕРКОНДЕНСАТОР С ДВОЙНЫМ ЭЛЕКТРИЧЕСКИМ СЛОЕМ

ИОНОПРОВОДЯЩИЙ СЕПАРАТОР

УГЛЕРОД

НАНОСТРУКТУРНЫЕ УГЛЕРОДНЫЕ МАТЕРИАЛЫ СУПЕРКОНДЕНСАТОРОВ

ИСПОЛЬЗУЕМЫЕ АКТИВНЫЕ ПОРЫ

УЛЬТРАМИКРОПОРЫ	- < 0,7 нм
МИКРОПОРЫ	- 0,7 – 2 нм
МЕЗОПОРЫ	- 2 – 50 нм
МАКРОПОРЫ	->50 нм

АКТИВИРОВАННЫЙ УГОЛЬ

РАЗМЕР ЧАСТИЦ:10 – 50 мкмРАЗМЕР АКТИВНЫХ ПОР:0,7 – 50 нмУДЕЛЬНАЯ ПОВЕРХНОСТЬ:2500 кв.м/г

НАНОТРУБКИ

РАЗМЕР НАНОТРУБОК	1 – 1,5 нм
РАЗМЕР АКТИВНЫХ СТРУКТУР:	40 -100 нм
УДЕЛЬНАЯ ПОВЕРХНОСТЬ:	100 кв.м/г

Постановка проблемы и метод расчёта

Цель моделирования

Классическая модель – граница электролит-металл

Нужно – электролит-графит

Графит – это полуметалл

Концентрация электронов и дырок:

 $n_e = 10^{19} \text{ cm}^{-3}$

$$n_p = 10^{19} \text{ cm}^{-3}$$

Концентрация ионов в электролите:

 $n_i \sim 10^{22} \text{ cm}^{-3}$

$$n_e + n_p \ll n_i$$

Графит – это полуметалл

Концентрация электронов и дырок:

 $n_e = 10^{19} \text{ cm}^{-3}$ $n_p = 10^{19} \text{ cm}^{-3}$ Концентрация ионов в электролите: $n_{i} \sim 10^{22} \text{ cm}^{-3}$ Эквивалентная схема: Сгр Сэ $1/C = 1/C^{rp} + 1/C^{3}$ $C_{rp}/C_{3} \sim ((n_e + n_p)/n_i)^{1/2} << 1$

Двойной электрический слой в системе графит-электролит

Формирование двойного электрического слоя в системе графит-электролит

Электролит в молекулярно-динамической ячейке

Основные характеристики системы

Разность потенциалов на пяти слоях графита:

$$\phi_2^{L} = 0.82 \text{ B}$$
 $\phi_2^{R} = 0.68 \text{ B}$

Перепад потенциала в электролите:

 $\Delta U_3 = 1.22B$

Контактные разности потенциалов:

 $\Delta \phi_{\kappa}^{L} = 6.12B \qquad \qquad \Delta \phi_{\kappa}^{R} = 7.35B$

Полная разность потенциалов, определяемая внешним полем:

U = 4.35B

Основные характеристики системы

Отношение полной ёмкости двойного электрического слоя в электролите к емкости системы:

$C_{y}/C \sim U/\Delta U_{y} > 4$

Ёмкость двойного электрического слоя в электрон-дырочной плазме графита оказывает преобладающее влияние на ёмкость системы графит-электролит!

Предельные ёмкостные характеристики системы графит-электролит

Электролит в молекулярно-динамической ячейке

Электролит в молекулярно-динамической ячейке

Распределение собственного электростатического потенциала в графитовой пластине во внешнем электрическом поле

Экспериментальные данные *

Тип материала электрода	Предельная ёмкость, µФ/см ²
Пиролитический графит, скол	12
Пиролитический графит, полированный	60
Высокоорентированный пиролитический графит, скол	3
Высокоорентированный пиролитический графит, полированный	50-70

* Jean-Paul Randin and Earnest Yeager, 1971

Выводы

- Влияние двойного электрического слоя в электрон-дырочной плазме графита на ёмкость системы преобладает по сравнению с влиянием двойного слоя в электролите.
- Ионы калия адсорбируются на поверхности графита, ОН-ионы, по-видимому, не адсорбируются.
- Оценка ёмкости электрода и чистого бездефектного графитового электрода 20 Ф/см³.

Молекулярная динамика

Классическая МД

- Неизменяемый эмпирический потенциал
- Нет электронных степеней свободы
- Химические реакции практически невозможно описать
- Доступные масштабы ~100 Å
 ~10 ns

Ab initio МД

- Потенциал для движения ионов рассчитывается «налету»
- Электронные степени свободы
- Описание образование и разрыва химической связи
- Доступные масштабы ~20 Å
 ~10 ps

Электрические конденсаторы

Двойной электрический слой на границе проводник-электролит

Двойной электрический слой на границе проводник-электролит

Если разность потенциалов приложенная к электрохимической ячейке меньше равновесного значения, определяемого термодинамическими свойствами электролита, то перенос заряда от проводника к электролиту становится невозможен.

При превышении этого потенциала в системе начинаются электрохимические реакции, что является аналогом пробоя традиционного конденсатора.

Электрические конденсаторы

Экспериментальные данные *

* Jean-Paul Randin and Earnest Yeager, 1971