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• Mixed phase at first-order phase transitions in 
nuclear matter.
• Its non-uniform structures.
• Its equation of state.
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In the mixed phase with charged particles, 
non-uniform “Pasta” structures are expected.

[Ravenhall et al, PRL 50(1983)2066,

Hashimoto et al, PTP 71(1984)320]

Optimum structure to minimize the 
(free) energy of the system.

Depending on the density,
geometrical structure of mixed phase 
changes from droplet, rod, slab, tube 
and to bubble configuration.

Liquid-gas, neutron drip, meson condensation, hyperon mixture, 

quark deconfinement, color super-conductivity, etc.

Some of them are the first-order mixed phase

Phase transitions in nuclear matter
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(I) Low density nuclear matter

• Collapsing stage of supernova explosion (non b-equil)
 Liquid-gas phase transition

T=0 (not realistic)

electron gas + nuclear liquid

T>0   (1~several MeV)

nuclear gas + nuclear liquid

• Neutron star crust (b-equil)

 Liquid-gas phase transition (Neutron drip)

T=0

neutron liquid + nuclear liquid
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Numerical calculation of mixed-phase

• Assume regularity in structure:  divide whole space into 
equivalent and neutral cells with a geometrical symmetry
(3D: sphere, 2D : cylinder, 1D: plate).  

Wigner-Seitz cell approx.

• Give a geometry (Unif/Dropl/Rod/...) and a baryon density rB. 
• Solve the field equations numerically.  Optimize the cell size 
(choose the  free-energy-minimum).
• Choose an free-energy-minimum geometry among 7 cases 
(Unif (I), droplet, rod, slab, tube, bubble, Unif (II)).

WS-cell



Field equations to be solved

Relativistic Mean Field (RMF) model：
Lorentz-covariant Lagrangian L with baryon densities, meson fields(, , r),
electron density and the Coulomb potential is determined.

Local density approx：
Local density approximation for baryons and electron Thomas Fermi

Consistent treatment for potentials and densities：
 Coulomb screening by charged particles

[T.M. et al,PRC72(2005)015802;  Rec.Res.Dev.Phys,7(2006)1]
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Density profiles in WS cell

Pasta of low density nuclear matter (with fixed Yp)

Yp=0.5
T=0

Yp=0.1
T=0
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EOS and the structure size

T=0 T=0

Pasta structures 

(droplet, rod,…) 

appear with the 

change of density.

Pasta  energy gain



9

Dependence of E/A on R.Strong surface tension
and weak Coulomb
large R

Extreme case 
 no minimum. 

(pasta unstable) 
[Voskresensky et al,
PLB541(2002)93;
NPA723(2003)291]

R is the size of structure

Structure size
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Coulomb  screening effects
Compare different  treatments of Coulomb int.

Smaller structure size for “no Coulomb screening” calc.

 Coulomb screening enlarges the structure size.

(uniform electron)



11

Surface tension effects Compare different nuclear surface tension

Weak surface     Normal surface tension

Smaller structure size for weak surface tension.

 Stronger surface tension enlarges structure size.
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Mixed phase at higher densities

• Kaon condensation 

[PRC 73(2006)035802, RecentResDevPhys7(2006)1]

• Hadron-quark transition

[PRD 76(2007)123015, PLB 659(2008)192]
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At 2-3 r0, hyperons are expected to appear.
 Softening of EOS 
Maximum mass of neutron star 
becomes less than 1.4 solar mass.
 Contradicts the obs >1.5 Msol

Possibility to resolve this problem
by introducing quark phase in 
neutron stars.

(III) Hadron-quark phase transition

1.4

(only pn)

}
hyperons

[Schulze et al, PRC73 

(2006) 058801]
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Coupled equations to get density profile, energy, 

pressure, etc of the system
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Hadron-quark droplet

Rearrangement of charge
Quark phase is negatively charged.
 u quarks are attracted and ds quarks repelled.
Same happens to p in the hadron phase.
Localization of e into hadron phase.
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EOS of matter

Full calculation is 
close to the Maxwell 
construction (local 
charge neutral).  
Far from the bulk 
Gibbs calculation 
(neglects the surface 
and Coulomb).
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Mass-Radius relation of compact stars

Full calc yields the  
neutron star mass 
very close to that of 
the Maxwell constr.

The maximum mass 
are not very different 
for three cases. surf=40
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

R and  dependence 

of E/A.

Large    large R

Unstable for very largle 
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• Maxwell construction :
Assumes local charge neutrality (violates the Gibbs cond.)
and neglects surface tension.

• Bulk Gibbs calculation :
Respects the balances of i between 2 phases but neglects surface 
tension and the Coulomb interaction.

• Full calculation:  includes everything.

Strong surface  Large R, 
charge-screening  effectively 

local charge neutral.
 close to the Maxwell construction.

Weak surface  Small R  Coulomb ineffective

 close to the bulk Gibbs calc. 

Equation of state of mixed phase



20

Summary

• We have studied ``Pasta’’ structures of low density
matter (liquid-gas mixed phase) and high density matter
(meson condensation and hadron-quark mixed phase).
• Coulomb screening and stronger surface tension enlarges
the structure size.
• If surface tension is strong, Maxwell construction is
effectively valid.


