МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОСТРАНСТВЕННО-ОГРАНИЧЕННОЙ НЕИДЕАЛЬНОЙ ПЛАЗМЫ

Igor Morozov¹, Thomas Raitza², Heidi Reinholz², Gerd Röpke²

¹Объединенный институт высоких температур РАН, Москва ²Rostock University, Rostock, Germany

30 ноября 2009г.

- Генерация неидеальной лазерной плазмы при ионизации наноразмерных металлических кластеров лазерными импульсами умеренной интенсивности.
- Постановка численного молекулярнодинамического моделирования кластеров Na.
- Спектр автокоррелятора тока для квазиравновесной электронной компоненты кластера.
- > Исследование колебаний электронного облака.

Анализ экспериментальных данных

Lora Ramunno, Christian Jungreuthmayer, Heidi Reinholz, Thomas Brabec Probing attosecond kinetic physics in strongly coupled plasmas J. Phys. B: At. Mol. Opt. Phys. **39** (2006) 4923–4931

• Varying the intensity from 10^{16} to 2.10¹⁴ W/cm² results in nanoplasmas with Γ_{ei} between 0.1 and 1.

- Tree MD simulations
- To eliminate numerical heating, we use shielded electron and ion Coulomb potentials with a shielding radius of **1 Bohr**.

• Classical approach of modelling **bound-state dynamics** in a SCP.

Экспериментальные работы

T. Döppner, Th. Fennel, P. Radcliffe, J. Tiggesbäumker, and K.-H. Meiwes-Broer lon and electron emission from silver nanoparticles in intense laser fields Phys. Rev. A **73**, 031202R (2006)

Comparison of the Ag¹⁰⁺ yield diamonds, left axis with the maximum kinetic energy E_{max} of the emitted electrons dots, right axis following dual pulse excitation of large Ag_N at a laser intensity of 2.5x10¹³ W/cm² (upper panel) and 8.0x10¹³ W/cm², respectively. The lines are guide to the eye fits. Both the electron and the ion signals exhibit a strong dynamics and their maxima occur nearly simultaneously (see dashed vertical lines), irrespective of the laser intensity.

Нагрев и разлет кластера

Начальное состояние кластера

- Электроны неподвижны и находятся «на ионах»
- Атомы Na образуют правильный кристалл:

N_i = 55 — 3 оболочки N_i = 147 — 4 оболочки N_i = 309 — 5 оболочек

Параметры лазерного импульса						
I = 5·10 ¹² Вт/см ²						
λ = 436.6 нм						
τ = 50 фс						

Отн. масс: *М/m* = 41910

Разлет кластера после взаимодействия с импульсом

Нагрев и разлет кластера

Начальное состояние кластера

- Электроны неподвижны и находятся «на ионах»
- Атомы Na образуют правильный кристалл:

N_i = 55 — 3 оболочки N_i = 147 — 4 оболочки N_i = 309 — 5 оболочек

Параметры лазерного импульса						
I = 5·10 ¹² Вт/см ²						
λ = 436.6 нм						
τ = 50 фc						

Отн. масс: *М*/*m* = 41910

Разлет кластера после взаимодействия с импульсом

Параметры плазмы в различные моменты времени после ионизации кластера Na₅₅

t, fs	r _{rms} , nm	n_i , 10 ²¹ cm ⁻³	$n_e, 10^{21} \text{cm}^{-3}$	T_e , eV	Г	Θ
100	0.85	21.5	17.2	1.23	4.89	0.50
150	0.98	14.0	11.2	0.94	5.51	0.52
200	1.17	8.17	6.68	0.77	5.72	0.59
250	1.40	4.80	4.02	0.72	5.11	0.78
300	1.64	2.97	2.48	0.59	5.34	0.88

Эффективный размер кластера: r_п

$$r_{\rm rms} = \sqrt{\frac{5}{2N_i}} \sum_{k=1}^{N_i} r_k^2$$
$$\Gamma_e = \left(\frac{4\pi n_e}{3}\right)^{1/3} \frac{e^2}{kT}$$

Параметр неидеальности:

Параметр вырождения:

 $\Theta = \frac{k_B T_e}{\varepsilon_F} = \frac{2m_e k_B T_e}{(2\pi n_e)^{2/3} \hbar^2}$

Параметры плазмы в различные моменты времени после ионизации кластера Na₁₄₇

t, fs	r _{rms} , nm	n_i , 10 ²¹ cm ⁻³	$n_e, 10^{21} \text{cm}^{-3}$	T_e , eV	Γ	Θ
100	1.20	20.2	14.7	2.67	2.13	1.22
150	1.50	10.5	7.84	2.08	2.22	1.44
200	1.91	5.07	3.89	1.64	2.23	1.81
250	2.37	2.63	2.07	1.24	2.38	2.09
300	2.87	1.48	1.18	1.01	2.44	2.46

Эффективный размер кластера: п

$$r_{\rm rms} = \sqrt{\frac{5}{2N_i} \sum_{k=1}^{N_i} r_k^2}$$
$$r_e = \left(\frac{4\pi n_e}{3}\right)^{1/3} \frac{e^2}{kT}$$

Параметр неидеальности:

Параметр вырождения:

 $\Theta = \frac{k_B T_e}{\varepsilon_F} = \frac{2m_e k_B T_e}{\left(2\pi n_e\right)^{2/3} \hbar^2}$

Параметры плазмы в различные моменты времени после ионизации кластера Na₃₀₉

t, fs	r _{rms} , nm	n_i , 10 ²¹ cm ⁻³	$n_e, 10^{21} \text{cm}^{-3}$	T_e , eV	Г	Θ
100	1.50	22.0	18.5	2.97	2.07	1.16
150	1.72	14.5	12.4	2.41	2.23	1.24
200	2.04	8.73	7.46	1.87	2.43	1.34
250	2.42	5.24	4.54	1.54	2.49	1.55
300	2.83	3.26	2.86	1.26	2.61	1.72

Эффективный размер кластера:

$$F_{\rm rms} = \sqrt{\frac{5}{2N_i}} \sum_{k=1}^{N_i} r_k^2$$
$$F_e = \left(\frac{4\pi n_e}{3}\right)^{1/3} \frac{e^2}{kT}$$
$$K_B T_e \qquad 2m_e k_B T$$

 $\varepsilon_F = (2\pi n_s)^{2/3} \hbar$

Параметр неидеальности:

Параметр вырождения:

Распределение электронов по скоростям в различные моменты времени

Фиксация ионов для изучения плазмы на определенном этапе разлета кластера

Эффективный размер кластера:

$$r_{rms} = \sqrt{\frac{5}{3} \sum_{i=1}^{N_i} r_i^2}$$

Фиксация ионов для изучения плазмы на определенном этапе разлета кластера

Фиксация ионов для изучения плазмы на определенном этапе разлета кластера

Проводимость и эффективная частота столкновений

Обобщенная формула Друде

ideal plasma

 $v = 2\delta (k \rightarrow 0)$

 $\begin{aligned} \nu &= \sigma^{-1}(0)/4\pi \\ \nu &= \operatorname{Re} \sigma^{-1}(\omega_p)/4\pi \end{aligned}$

ideal plasma $L_{a}=3.2$

Фурье образ коррелятора тока

Nonideality parameter $\Gamma = 2$

Частоты основных мод колебаний

Na ₅₅								
<i>t</i> , fs	$n_e,$ 10^{21}cm^{-3}	T_e , eV	ω ₁ , fs ⁻¹	ω _{Mie} , fs ⁻¹	ω _{theor} , fs ⁻¹	ω ₂ , fs ⁻¹	ω _{pl} , fs ⁻¹	
100	17.2	1.23	3.80	4.78	3.81	6.16	7.40	
150	11.2	0.94	3.10	3.85	3.12	5.27	5.97	
200	6.68	0.77	2.40	2.94	2.43	4.63	4.61	
250	4.02	0.72	1.90	2.26	1.98		3.58	
300	2.48	0.59	1.63	1.76	1.67		2.81	

Na₃₀₉

<i>t</i> , fs	$n_e,$ 10 ²¹ cm ⁻³	T_e , eV	ω ₁ , fs ⁻¹	ω _{Mie} , fs ⁻¹	ω _{theor} , fs ⁻¹	ω ₂ , fs ⁻¹	ω _{pl} , fs ⁻¹
100	18.5	2.97	4.12	4.83	4.12	6.80	7.67
150	12.4	2.41	3.10	3.93	3.93	5.38	6.28
200	7.46	1.87	2.31	3.04	3.04	4.13	4.87
250	4.54	1.54	1.75	2.36	2.36	3.22	3.80
300	2.86	1.26	1.35	1.86	1.86	1	3.02

Расчет частоты коллективных колебаний

Частота малых колебаний электронного облака

$$\begin{split} \Delta U &= \iiint n(\vec{r}) V(\vec{r} - z\vec{e}_z) d^3 \vec{r} \\ \omega^2 &= \frac{1}{m} \left. \frac{\partial^2 U}{\partial z^2} \right|_{z=0} = \frac{2\pi}{m} \int_0^\infty n(r) r^2 dr \int_{-1}^1 \left[V''(r) t^2 + \frac{V'(r)}{r} (1 - t^2) \right] dt \\ &= \frac{4\pi}{3m} \int_0^\infty n(r) \left[V''(r) + \frac{2V'(r)}{r} \right] r^2 dr. \end{split}$$

Электронная плотность

$$n_{e}(r) = n_{core}(r) + n_{out}(r),$$

$$n_{core}(r) = \begin{cases} n_{e}(r), & r \leq r_{c}, \\ 0, & r > r_{c}, \end{cases} \quad n_{out}(r) = \begin{cases} 0, & r \leq r_{c}, \\ n_{e}(r), & r > r_{c}. \end{cases}$$

Суммарный потенциал внутренних электронов

$$\begin{split} V_{\alpha}(r) &= -2\pi e q_{\alpha} \int_{0}^{\infty} n_{\alpha}(r_{1}) r_{1}^{2} dr_{1} \int_{-1}^{1} \frac{dt}{\sqrt{r_{1}^{2} - 2r_{1}rt + r^{2}}} \operatorname{erf}\left(\frac{\sqrt{r_{1}^{2} - 2r_{1}rt + r^{2}}}{\sigma}\right) \\ &= -\frac{2\pi e q_{\alpha}}{r} \int_{0}^{\infty} n_{\alpha}(r_{1}) \left[(r + r_{1}) \operatorname{erf}\left(\frac{r + r_{1}}{\sigma}\right) - |r - r_{1}| \operatorname{erf}\left(\frac{|r - r_{1}|}{\sigma}\right) - \frac{2\sigma}{\sqrt{\pi}} \exp\left(-\frac{r^{2} + r_{1}^{2}}{\sigma^{2}}\right) \operatorname{sh}\left(\frac{2rr_{1}}{\sigma^{2}}\right) \right] r_{1} dr_{1}. \end{split}$$

core

Частоты основных мод колебаний

Na ₅₅									
<i>t</i> , fs	$n_e,$ 10 ²¹ cm ⁻³	T_e , eV	ω ₁ , fs ⁻¹	ω _{Mie} , fs ⁻¹	ω _{theor} , fs ⁻¹	ω ₂ , fs ⁻¹	ω _{pl} , fs ⁻¹		
100	17.2	1.23	3.80	4.78	3.81	6.16	7.40		
150	11.2	0.94	3.10	3.85	3.12	5.27	5.97		
200	6.68	0.77	2.40	2.94	2.43	4.63	4.61		
250	4.02	0.72	1.90	2.26	1.98		3.58		
300	2.48	0.59	1.63	1.76	1.67		2.81		

Na₃₀₉

<i>t</i> , fs	$n_e,$ 10 ²¹ cm ⁻³	T _e , eV	ω ₁ , fs ⁻¹	ω _{Mie} , fs ⁻¹	ω _{theor} , fs ⁻¹	ω ₂ , fs ⁻¹	ω _{pl} , fs ⁻¹
100	18.5	2.97	4.12	4.83	4.12	6.80	7.67
150	12.4	2.41	3.10	3.93	3.93	5.38	6.28
200	7.46	1.87	2.31	3.04	3.04	4.13	4.87
250	4.54	1.54	1.75	2.36	2.36	3.22	3.80
300	2.86	1.26	1.35	1.86	1.86		3.02

Исследование структуры колебаний электронного облака

Кросс-корреляторы плотности тока:

$$K_{ik}(t) = \frac{\left\langle \mathbf{j}_{i}(0)\mathbf{j}_{k}(t)\right\rangle}{\left\langle \mathbf{j}_{tot}^{2}(0)\right\rangle}, \quad \mathbf{j}_{i}(t) = \frac{\mathbf{J}_{i}(t)}{\Delta V_{i}}$$

$$\operatorname{Re} K_{ik}(\omega) = \omega_p \int_0^\infty K_{ik}(t) \cos(\omega t) dt$$

Матрица кросс-корреляторов:

$$\hat{\mathbf{K}} = \begin{pmatrix} \operatorname{Re} K_{11}(\omega) & \cdots & \operatorname{Re} K_{1M}(\omega) \\ \vdots & \ddots & \vdots \\ \operatorname{Re} K_{M1}(\omega) & \cdots & \operatorname{Re} K_{MM}(\omega) \end{pmatrix}$$

Примеры кросс-корреляторов тока

Зависимость амплитуды моды от частоты

Зависимость амплитуды моды от частоты

Выводы

- 1. Эксперименты с кластерами предоставляют возможность проверки теории неидеальной плазмы.
- Для изучения свойств плазмы в настоящей работе использовано усреднение по равновесной МД траектории с принудительной остановкой ионов. Следующим шагом будет усреднение по ансамблю неравновесных состояний.
- 3. На Фурье преобразовании автокоррелятора тока присутствует несколько пиков, соответствующих коллективным колебаниям электронов, что отличается от случая пространственно однородной плазмы.
- 4. В работе проанализированы основные моды колебаний электронного облака, найдены их частоты и относительные амплитуды.