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EUV Lithography
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Laser (LPP) source
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Conversion Efficiency (CE) of

2.5 - 4.5 % has been achieved with Sn wire w/o pre-pulse



-~
/A Code THERMOS
e Self-consistent Hartree-Fock-Slater potential
at given temperature T and density p
e Jonization stage & 10n composition
e Equation of state
* Absorption and emission coefficients
e Heat- and electro- conduction coetficients

e Rates of atomic processes

Range of substance parameters
Temperature T ~ 104-10° K
Density p ~ 10— 10* g/cm?
Material — from Hydrogen (Z=1) to Gold (Z=79)



Benchmark

Opacity Workshops & Code Comparison Study
1992 — 1997

Non-LTE Code Comparison Workshops
1999 - 2009

Opacity experiments:
test the physics foundations
of the plasma models and codes also
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Simple solution for RMHD codes!

At given distribution of temperature T and
density N, the calculation of ion composition and
radiation transport is based on opacity and
emissivity tables of two types: optically thin and
optically thick (in some range of photon
energies).

Opacity effects are included by using effective
total escape parameter ¢, which is equal 1 for
transparent case and equals O for optically thick
case.
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Radiative loss
detailed calculatlon & mterpolatlon

Radiative loss, MW/cm?
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Optically thick coefficients — - —-

Selfconsistent calculation
: Interpolation e
P4 Cnmpletely transparent consideration -=---

1le+17 1e+18 1e+19 1e+20
Electron density, 1/cm”




Intensity, arb.units
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Intensity, arb.units

Xenon discharge spectrum
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Laser source:

comparison with experiment
Sn

CO, laser beam

Rotating wheel
covered by thin
tin film

EUV source

| Bath with
liquid tin

CO, laser beam energy was 0.36 J

Radlal distribution of laser power density close to Gaussian with
size 300 um (1/e?)

Temporal dependence will be shown later

Experimental data on EUV source spectra, EUV power, EUV
Isotropy, EUV source size were used for comparison with calculated
results




Experimental EUV power
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. Calculated time

dependence of in-band
EUV power repeats
qualitatively its
experimental behavior

. Experimentally seen long

tail of EUV radiation was
modeled as well

. In band EUV repeats

laser pulse waveform with
delay ~ 3-5 ns




Experimental and calculated spectra of Sn plate
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1. Experimental and calculated spectra coincide rather well

2. Other spectral regions were calculated too, though without detalils.
Only negligible part of energy was emitted there ~< 1%




EUV source size

Experiment Modeling

Laser — | \
N

EUV intensity, rel.un
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Radius, um
Sn plate
1. EUV source size, D = 2*R is about 350 um (1/e2),
Pinhole image gives EUV which is close to experimental one
source size about 300 2. EUV source size is defined mainly by laser focus
um (1/e2) spot size
3. It slightly increases with laser energy




Source isotropy

— model
—— experiment
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1. Vertical direction, polar angle 6 = 0, corresponds to direction of laser

2. Isotropy of EUV source is comparatively high in 5 steradian of collector
mirror
3. Experimental EUV isotropy is slightly higher than calculated one




CONCLUSION
Code THERMOS BELINE

for modeling EUV emission spectra

self-consistent calculation of level kinetics and radiation
transport for different plasma configurations

*Al, W, Sn, Xe and other elements (admixture of H, He,
C, O)

*Tables for RMHD codes

*Spectra resolved in time and space (postprocessing)



