

Институт электрофизики и электроэнергетики Российской Академии наук (ИЭЭ РАН) 191186, Санкт-Петербург, Дворцовая наб. тел.: 7(812) 315 1757, факс: 7(812) 571 5056, email: rc@iperas.nw.ru

Нагрев газа акустическими волнами в мегаамперных разрядах сверхвысокого давления

<u>М. Э. Пинчук</u>¹, А. А. Богомаз¹, А. В. Будин¹, С.Ю. Лосев¹, Ф. Г. Рутберг¹

1ИЭЭ РАН, Санкт-Петербург

Параметры экспериментов

- начальная концентрация водорода n ~10²⁰—10²² см⁻³
- J_{max} 500–1600 kA,
- dJ/dt ~10⁹-10¹¹ A/c
- энерговклад в разряд свыше 500 кДж

X-RAY RADIATION FROM DISCHARGE CHANNEL (H_2 , P_0 - 5 MPa)

X-Ray signal (X-Ray), current (J), voltage(V). Filter - 10 μ m Al foil. X-Ray Diode was set in 250 mm from discharge chamber axe. Interelectrode gap is 10 mm Initial hydrogen pressure 5 MPa. Conical steel electrodes of 10 mm diameter of tip.

X-Ray signal (X-Ray), current (J), voltage(V). Filter - 10 μ m Al foil. X-Ray Diode was set in 250 mm from discharge chamber axe. Initial hydrogen pressure 5 MPa. Steel electrodes of 20 mm diameter. Interelectrode gap is 20 mm.

Signal oscillations

Fig. 8. Oscillation of X-Ray signal (X-Ray) and voltage (V). Filter - 10 μ m Al foil. X-Ray Diode was set in 160 mm from discharge chamber axe. Initial hydrogen pressure 5 MPa. Steel electrodes of 20 mm diameter. Interelectrode gap is 20 mm.

4

X-RAY SYGNALS WITH CURRENT AND VOLTAGE CURVES (H_2 , $P_0 - 7$ MPa). a - V_0 -12 kV, b - V_0 -16 kV.

Разряд при начальном давлении водорода перед разрядом 32 МПа.

Зависимости от времени диаметра канала по уровню яркости 0.3 и 0.7 от максимальной (D_{0.3} и D_{0.7} соответсвенно), яркостной температуры (T_{br}) в центре канала, осциллограммы тока (J), напряжения (V). Стальные полусферические электроды диаметром 20 мм. Межэлектродное расстояние 20 мм.

Разряд при начальном давлении водорода перед разрядом 32 МПа.

Разряд при начальном давлении водорода перед разрядом 110 МПа.

Фоторазвертка в центре межэлектродного промежутка; зависимости от времени диаметра канала (D), яркости (B) в центре канала, осциллограммы тока (J), напряжения (V) и давления (P). Вольфрамовые электроды диаметром 6 мм. Межэлектродное расстояние 12 мм.

24/11/10

24/11/10

Функция корреляции разностных кривых

напряжения (20-70 µs) и давлении (50-100 µs).

200

Спектр функции корреляции разностных кривых

Осциллограммы напряжения и давления с усредненными кривыми на базе 50 µs и соответствующие им разностные кривые

Разряд при начальном давлении водорода перед разрядом 110 МПа.

6

5

3

0

-1

-2

200,0µ

ΔV, kV

Разряд при начальном давлении водорода перед разрядом 110 МПа.

Параметры канала $T = 10^5$ K, $n_i = 1.6 \times 10^{20}$ cm⁻³, r = 0.35 cm по проводимости и давлению

$$l_{R} = \frac{4.4 \times 10^{22} T^{7/2}}{n_{i} \bar{m} (\bar{m} + 1)^{2}} \approx 10^{-2} cm \qquad \longrightarrow \quad \text{AYT}$$

Баланс мощности при наличии акустических колебаний

$$N_{l} + P_{a} + P_{b} \sim IEl,$$

где $N_{_{I}}$ - мощность излучения через окно прозрачности,

Р_а — полная излученная акустическая мощность на стенки,

 $\boldsymbol{P}_{\boldsymbol{b}}$ - мощность сходящихся в центре канала акустических колебаний

$$\begin{split} N_{1} &= 2 \pi r l \sigma T^{4} \frac{\int_{0}^{x} \frac{x^{3} dx}{e^{x} - 1}}{\int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1}}, e \partial e x = \frac{h v}{kT}, h v = 13.6 \text{ } \text{3B} \\ P_{a} &= I 2 \pi R^{2} \frac{\lambda}{l}, e \partial e I = \frac{1}{2} \frac{P_{m}}{\rho c} - u h mehcubhocmb u \text{3лучения на стенке разрядной камеры радиуса R} \\ P_{b} &= I 2 \pi r l \\ N_{l} &= 1.6 \times 10^{8} \text{ Br}; \qquad \underline{P_{a}} = 4.2 \times 10^{8} \text{ Br}; \qquad P_{b} = 1.5 \times 10^{8} \text{ Br}; \end{split}$$

 $N_{I} + P_{a} + P_{b} = 7.3 \times 10^{8} \text{ Br}$ $IEl = 7.6 \times 10^{8} \text{ Br}$ 10

Колебания канала разряда обусловленные выравниванием магнитного и газокинетичессского давления

$$T = \frac{56 r^2}{J} \sqrt{\frac{mn}{(\gamma - 1)}}$$

где *r* – радиус канала разряда [см];

J – величина тока [A];

m – масса атома металла в канале [г];

n – концентрация металла в канале [см⁻³].

 $T_1/T_2 \approx \sqrt{m_1/m_2}$

Параметры акустических колебаний, возникающих в объеме разрядной камеры

N опыта	Р _{нач} MPa	ρ Γ/cM^3 $\times 10^{-2}$	$\begin{array}{c} C_{\text{hav}} \\ \text{cm/c} \\ \times 10^5 \end{array}$	Т _{нач расчетное} μs	Τ _{нач эксп} μs	P _{max} MPa	C_{max} (максимум тока) cm/s $\times 10^5$	Т _{расч} (максимум тока) µs	Т _{эксп} (максимум тока) µs	Примечание
N5	30	2.03	1.58	15.6	16	180	3.76	8.5	5.9	по напряжению
N28	84	3.47	2.12	15	15		3.67	8.7	7.7	по напряжению и давлению
N23	104	4.22	2.19	15	14	360	4.07	7.8	6.9	по напряжению
N34	110	4.16	2.68	12		310	4.49	7.1	6.7	по давлению

Резонанс акустических колебаний с колебаниями, обусловленными выравниванием магнитного и газокинетического давления.

Ток и напряжение на разрядном промежутке при начальной концентрации частиц n₀=1.5×10²² см⁻³ (межэлектродный промежуток 10 мм, вольфрамовые электроды диаметром 6 мм).

Заключение

1. На основании экспериментальных данных и расчетных оценок определен токовый диаметр канала разряда.

2. При изменении материала инициирующей проволочки изменение периода колебаний пропорционально корню из атомного номера. Этот факт является аргументом в пользу того, что колебания диаметра канала разряда, протекающего в парах металла, связаны с выравниванием магнитного и газокинетического давления.

3. При начальных давлениях ~100 МПа на нагрев газа в разрядной камере акустическими волнами вблизи максимума энерговыделения уходит половина вложенной в канал электрической мощности.

СПАСИБО ЗА ВНИМАНИЕ

Институт электрофизики и электроэнергетики Российской Академии наук (ИЭЭ РАН) 191186, Санкт-Петербург, Дворцовая наб., 18 rc@iperas.nw.ru pinchme@mail.ru тел.: 7(812) 315 1757, факс: 7(812) 571 5056,