ИССЛЕДОВАНИЕ ВЯЗКОСТИ ПЛАЗМЕННО-ПЫЛЕВЫХ СТРУКТУР РАЗЛИЧНОЙ СТЕПЕНИ УПОРЯДОЧЕННОСТИ

Ворона Н.А., Гавриков А.В, Иванов А.С., Петров О.Ф., Фортов В.Е., Тимирханов Р.А.

Экспериментальная методика и параметры эксперимента

мощность излучения Ar+ лазера – 0 - 360 мВ давление в системе – 35 Па частицы МФ – 1,9 мкм плотность структуры – 1,6 10³ см⁻³ характерный размер канала течения – 2*R*_v = 7 мм ширина области действия лазерного излучения – 2*R*_v = 3 мм

Распределение дрейфовой скорости макрочастиц и распределения мощности лазерного излучения

•••

Параметры невозмущенной структуры: параметр неидеальности $\Gamma \sim 35$; концентрация $n_{\rm d} = 1.6 \cdot 10^3$ см⁻³; кинетическая температура T = 0.05 эВ

r – радиус макрочастицы		
η _g – вязкость буферного газа (аргон)		
l _g – длина свободного пробега молекулы з	аргона	
V _d – скорость макрочастиц		$F_p = \pi r^2 \cdot P_{\gamma}^*$
Р _у *– эффективное давление		F _{fr} =F _p
Р _у – давление лазерного излучения	$F_{fr} \longrightarrow F_p$	$\mathbf{P}_{u}^{*} = 6 \cdot \eta_{a} \cdot \mathbf{V}_{d} / (\mathbf{A} \cdot \mathbf{I}_{a})$
с – скорость света		
θ – коэффициент отражения света		$\mathbf{P}_{\gamma} = \mathbf{W}(1 + \mathbf{\Theta}) / \mathbf{Sc}$
А – численный коэффициент, связанный	с характером	$S = \pi R^2$
отражения атомов газа от поверхности ча	астицы А∈(1.09;1.58)	$ \pi R_{\gamma}$
$P_{\gamma} = 0.34 \cdot 10^{-3}$	³ Pa $P_{\gamma}^* = 1.7 \ 10^{-3}$	⁻³ Pa

$$\frac{\mathbf{V}_{g}}{\mathbf{V}_{d}} = \frac{3\pi r^{2}\mathbf{R}_{\gamma}^{2}\mathbf{n}_{d}}{\mathbf{AI}_{g}} \left(1 - \frac{\mathbf{R}_{\gamma}}{\mathbf{R}_{v}}\right)$$

$$V_g / V_d \approx 1.5 \cdot 10^{-4}$$

$$A = 1.58;$$

 $R_{\gamma} = 1.5 \text{ mm};$
 $n_{d} = 1.6 \ 10^{9} \text{ m}^{-3};$
 $2r = 1.9 \ 10^{-6} \text{m}$

T. S. Ramazanov and K. N. Dzhumagulova Contrib. Plasma Phys. 48, No. 4, 357 – 360 (2008)

Результаты

Пространственный Фурье-спектр распределения скоростей макрочастиц

Зависимость размера кластера от эффективного параметра неидеальности

Зависимость коэффициента сдвиговой вязкости от эффективного параметра неидеальности

Зависимость коэффициента сдвиговой вязкости плазменнопылевой жидкости от величины силы внешнего воздействия для различных давлений

Типичное неньютоновское распределение скоростей в канале течения

Модель Бингама неньютоновой жидкости

$$\begin{split} \tau_{rz} &= -\mu_0 \, \frac{dV}{dr} - \tau_0 \quad , \quad \left|\tau\right| > \tau_0 \\ & \frac{dV}{dr} = 0 \quad , \quad \left|\tau\right| < \tau_0 \end{split}$$

τ_{rz} – сдвиговая часть тензора напряжений
 μ₀ – коэффициент сдвиговой вязкости
 τ₀ – пороговое сдвиговое напряжение

r₀ – область поршневого течения r_γ – область действия объемной силы R – радиус канала течения

– модель Бингама
– Ньютонова модель

Эксперимент

Фото, схема установки и параметры эксперимента

Результаты

Зависимость максимальной скорости пылевых частиц в канале течения от <u>мощности лазерного луча</u>

Серия экспериментов с частицами МФ 12,74 мкм

A = 1.58; $R_v = 3$ MM; $R_v = 2$ MM; $n_d = 10^9$ m⁻³; 2r = 12.74 10⁻⁶m; $I_g = 0.5$ MM

A = 1.58; $R_{v} = 4$ MM; $R_{\gamma} = 4,5$ MM; $n_{d} = 8 \ 10^{9} \text{ m}^{-3}; 2r = -7,84 \ 10^{-6} \text{m}; I_{q} = 0,1$ MM

$$2R_{v} = 6 \text{ MM}$$

$$I_{g} = 0,5 \text{ MM}$$

$$2R_{v} \gg I_{g}$$

$$\Delta p_{in} = \pi r^{2} P_{\gamma}^{*} L \pi R_{\gamma}^{2} n_{d} \Delta t$$

$$\Delta p_{out} = 2\pi R_{v} L \eta_{g} \Delta t V_{g} / \Delta x$$

$$\Delta p_{in} = \Delta p_{out}$$

$$*V_{d} + \eta_{g} V_{g} = (1/2)\pi r^{2} R_{\gamma} (R_{v} - R_{\gamma}) n_{d} P_{\gamma}^{*}$$

 $\eta_{k2}^* \approx 3,9 \cdot 10^{-8} Pa \cdot c$

СПАСИБО ЗА ВНИМАНИЕ