Thermodynamics of shock-compressed hydrogen plasma of megabar pressure range

V.K.Gryaznov, I.L.Iosilevskiy, V.E.Fortov

Institute of Problems of Chemical Physics RAS Joint Institute for High Temperatures RAS

> *in cooperation with* **R.Redmer, B.Holst** *Rostock University*

Chemical picture. SAHA-D model

Basic features

- Matter is considered as interacted mixture of atoms, molecules, ions and electrons (H, H2, H+, H2+, e-)
- Coulomb interaction of charged particles modified pseudopotential model for multi-stage ionization (I.Iosilevskiy)
- Intensive sort-range repulsion modified soft sphere model (D.Young)
- Electrons are partially degenerated
- Short range attraction (V.Gryaznov, V.Fortov, M.Zhernokletov, I.Iosilevskiy et al., JETP, 1998)

SAHA-D model. Coulomb interaction

Pseudopotential model for multi-stage ionization (I.Iosilevskiy)

electron-electron

$$(r) = -\frac{Z_i e^2}{r} (1 - e^{-r/\sigma_{ie}})$$

electron-ion

Corrections to thermodynamic values

 $\mathbf{P}^{(Coul)}$

 $\Delta \mu^{(Coul)}$

 $\Lambda F^{(Coul)}$

Parameters of correlation functions are defined from conditions valid at any values of coupling parameter $\Gamma_{\rm D}$

- 1. Local electro-neutrality condition
- 2. 'Second moment' conditions of Stillinger & Lowett, (1968)
- 3. Non-negativity of correlation functions
- 4. Strong correlation between the 'depth' of electron-ionic pseudopotential and amplitude of screening cloud

Saha-D model. Short range repulsion

Short range repulsion: Modified soft sphere model (D.Young, 1977) for particle mixture of different sizes

 $r_{c} = \left[\sum n_{j} r_{j}^{3} / \sum n_{j}\right]^{1/3}$ $\frac{\Delta F_{SS}}{Nk_{B}T} = C_{s} y^{s/3} (\varepsilon_{SS} / k_{B}T) + \frac{s+4}{6} Q y^{s/9} (\varepsilon_{SS} / k_{B}T)^{1/3};$ $y = \frac{3Y \sqrt{2}}{\pi}; \quad Y = \frac{4\pi r_{c}^{3}}{3} = \frac{\pi \sigma_{c}^{3}}{6}$

1. Parameters of molecule D_2 (R_M , s, ϵ_{SS}) and atom D (R_A , s, ϵ_{SS}) are determined in accordance with non-empirical atom-atom approximation

E.Yakub, *High.Temp*, **28**, (1990), 664

2. Key parameter R(D) / R(D₂)=0.8

Saha-D model. Short range attraction

Short range attraction:

$$\Delta F_{mm} = \Delta E_{mm} = -A \left(\sum N_i\right)^{1+\delta} \cdot V^{-\delta}$$
$$\Delta P_{mm} = -A \delta V^{1+\delta}; \quad A, \delta = const$$

Attractive corrections are independent of temperature. $\delta=1$ – Van der Waals-like approximation. Parameter A supplies correct sublimation energy of molecular system at condensed state

V.Gryaznov, V.Fortov, M.Zhernokletov, I.Iosilevskiy et al, JETP, **87**, (1998), 678

Hugoniots of liquid hydrogen and deuterium Experimental data and model calculations

Ľ

Hugoniots of liquid hydrogen and deuterium Experimental data and model calculations

Liquid deuterium. Secondary shock Experimental data and model calculations

Sandia National Laboratories

Liquid deuterium. Secondary shock Experimental data and model calculations

Liquid deuterium. Secondary shock Model calculations

SAHA-S

P, GPa

Hugoniots of Deuterium

Validation of high-temperature asympthotics

14

Hugoniots of Deuterium

Validation of high-temperature asympthotics

Hugoniots of Deuterium

Validation of high-temperature asympthotics

Thank you for the attention

Liquid deuterium. Secondary shock Experimental data and model calculations

Hugoniot of Deuterium

SAHA IV - $R(D)/R(D_2) = 0.4$ - Ross, Ree&Young, J. Chem. Phys, **79** (1983), 1487

$$R(D)/R(D_2) = 0.4$$

Experiment: - NOVA

- Z-Pinch (2003)
- Sarov (2002-2003)

Theory:

- SESAME Tables
- PIMC Militzer et al.
- PACH Beule et al.
- L-M Ross

Hugoniot of Deuterium

Hugoniot of Deuterium

SAHA-D - $R(D)/R(D_2) = 0.8$ - E.Yakub, *High.Temp*, **28**, (1990), 664

Chemical picture. General features of plasma models

Structure of free energy

$$F \equiv F_{i}^{(id)} + F_{e}^{(id)} + F_{ii,ie,ee,...}^{(int)}$$

Atoms, molecules, ions

$$F_i^{(id)} = \sum_{j=1}^L N_j k_B T \left[\ln \left(\frac{n_j \lambda_j^3}{Q_j} \right) + \frac{A_j}{k_B T} - 1 \right]$$
$$Q_j = \sum_i g_i W(\varepsilon_i, n, T) \exp \left[-\frac{\varepsilon_i}{k_B T} \right]$$

Electrons: (arbitrary degeneracy)

$$F_{e}^{(id)} = \frac{4Vk_{B}T}{\pi^{1/2}\lambda_{e}^{3}} \left[\alpha_{e}I_{1/2}(\alpha_{e}) - \frac{2}{3}I_{3/2}(\alpha_{e}) \right]$$

$$\alpha_e = \mu_e / k_B T; \quad \frac{n_e \lambda_e^3}{2} = \frac{\sqrt{\pi}}{2} I_{1/2}(\alpha_e)$$

(int) ii .ie .ee

Coulomb interaction: pseudopotential model, modified Debye approximations, ...

Strong short range repulsion between all species: atoms and molecules - spheres of nonzero radius...

Neutral-neutral short range attraction

Partition functions: $Q_i = Q_i(\varepsilon_i, \{n_i\}, T)$

Dependence of partition functions on density and temperature

Non-empirical atom—atom approximation E.Yakub, *High.Temp,* **28**, (1990), 664

Effective atomic diameters and inter-atomic distances in H₂ molecule

Т, К	1000	2000	4000	6000	8000	10000
σ _H	1.93	1.78	1.62	1.52	1.45	1.40
L _{H-H}	0.76	0.77	0.81	0.86	0.91	0.95

$$\Phi_{\rm H-H}(r) = (1/4)U({}^{1}\Sigma|r) + (3/4)U({}^{3}\Sigma|r)$$

 $SAHA-D R(D)/R(D_2) = 0.8$

 $H_2 \leftrightarrow 2H (D_2 \leftrightarrow 2D)$

Validation of SAHA-D model

Soft-sphere approximation for EOS of Hydrogen

Isotherm T = 300 K Comparison with experiment

Mao H.K., Hemley R.J. Rev. Mod. Phys. 66 671 (1994)

Isotherm T = 5'000 K

Comparison with *non-empirical* atom-atomic approximation

AAP - Yakub E.S. *Physica* B **265** 31 (1999)

Isotherm T = 125'000 K

Comparison with *ab-initio* approach

Ab-initio approach. Phys. Rev.Lett 85 1890 (2000)

Helioseismology Models and old inversion data

SAHA-S

SAHA-S – asympthotically exact model for thermodynamics of solar plasma V.Gryaznov, S.Ayukov, V.Baturin, I.Iosilevskiy, A.Starostin and V.Fortov J. Phys. A 39 4459 (2006)

SAHA-S

Helioseismology

SAHA-S and NEW inversion data (December 2008).

Summary

- Saha-D model has been applied to calculation of equation of state of warm dense deuterium.
- Comparison of Saha-D calculation results with single and double shock experimental data demonstrates good agreement.
- At high temperature limit Saha-D model coincides with asympthotically exact theoretical approximation (SAHA-S)

Outlook

- Saha-D has to be applied to experimental data of strong isentropic compression of deuterium
- Saha-D has to be applied to shock compression data of helium and nitrogen of megabar pressure range

Thank you for the attention!