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Static structure factors in thermal equilibrium plasmas I

The partial static structure factors (SSF) Srs (k) of the system are
defined as [1]:

Srs (k) =
1

Ni
< ρr (~k)ρs (−~k) >, (1)

with the microscopic partial charge densities

ρr (~k) =
Nr

∑
i=1

exp (ı~k ·~r r
i ). (2)

(r , s = e (electrons) or i (ions))

The partial SSF are related to screened effective potentials as

Srs (k) = δrs −
√

nrns

kBT
Φrs (k), (3)
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Static structure factors in thermal equilibrium plasmas II

where for Φrs the screened Hellmann-Gurskii-Krasko pseudopotential
taking into account the ion shell structure has been used [3]. The
Hellmann-Gurskii-Krasko pseudopotentials has the following view:

ϕab(r) =
eaeb

4πε0

(

1− e−r/Rc ab

r

)

+
|eaeb |
4πε0

a

Rcab

e−r/Rc ab , (4)

where RC ab = rcabrB , RC is the shell size.
The screening effects were incorporated on a base of the classical
Bogoljubov’s approach [2].
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Static structure factors in thermal equilibrium plasmas III

The effective response of the medium is described by

The charge-charge structure factor

Szz (k) =
1

Ne +Ni
< ρz (~k)ρz (−~k) >

=
See(k)− 2

√
zSei (k) + zSii (k)

1+ z
, (5)

where z is an ion charge and ρz = ρi (~k)− ρe(~k).
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Static structure factors in thermal equilibrium plasmas IV
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Figure: The charge-charge static structure factors Szz (5) for alkali plasmas
(Li+, Na+, K+, Rb+, Cs+) within the HGK model as compared to our results
obtained in the present work for hydrogen-like point charges (HLPC) within the
Deutsch model on a basis of (5) at Te = Ti . (a) Te = 60000K , Γee = 0.398,
Γii = 0.399; (b) Te = 30000K , Γee = 0.789, Γii = 0.8; As scale of the k-vector
we use the inverse electron Debye radius kDe [4].
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Static structure factors in thermal equilibrium plasmas V
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Figure: The charge-charge static structure factors Szz (5) for alkali plasmas
(Li+, Na+, K+, Rb+, Cs+) within the HGK model as compared to our results
obtained in the present work for hydrogen-like point charges (HLPC) plasmas
within the Deutsch model on a basis of (5) at Te = Ti . c) Te = 30000K ,
Γee = 1.14, Γii = 1.2; (d) Te = 30000K , Γee = 1.58, Γii = 2. As scale of the
k-vector we use the inverse electron Debye radius kDe [4].
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Static structure factors for two temperature plasmas I

Using a two-component hypernetted-chain (HNC) approximation scheme,
Seuferling et al. [5] have shown that

the partial SSFs under the conditions of the non-LTE (two-temperature)
take the form

Srs (k) = δrs −
√

nrns

kBT ′
rs

Φrs (k)− δer δes (
T ′

e

T ′
i

− 1)
|q(k)|2

z
Sii (k) (6)

where q(k) represents the screening cloud of free (and valence) electrons
that surround the ion

q(k) =

√
zSei (k)

Sii (k)
, (7)

and for Φrs the Hellmann-Gurskii-Krasko pseudopotentials (HGK) were
used. The effective temperature T ′

rs is given by,

T ′
rs =

mrT
′
s +msT

′
r

mr +ms
,
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Static structure factors for two temperature plasmas II

Here T ′
e = (T 2

e + T 2
q )

1/2 with Tq = TF /(1.3251− 0.1779
√

rs ), where

rs = ra/rB is the Brueckner parameter, TF = h̄2(3π2ne)2/3/(2kBme)
and

T ′
i = (T 2

i + γ0T
2

D )1/2,
TD = Ωpi h̄/kB , γ0 = 0.152 is the Bohm-Staver definition for the Debye

temperature with Ω2

pi = ω2

pi /(1+ kDe/k2), ωpi =
√

ze2ne/(ε0mi ),

mi is the ion mass, kDe =
√

e2ne/(ε0kBT ′
e) is the electronic Debye

wavenumber (TD ≈ 0.16eV , TF ≈ 14.5eV for Be2+).

The de Broglie wavelength becomes λrs = h̄/
√

2πµ′
rskBT ′

rs .
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Static structure factors for two temperature plasmas III
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Figure: Static structure factors (6) and the screening charge q(k ′) for Be2+

plasma at Te = 20eV , T ′
e = 24.06eV , z = 2 and ne = 2.5× 1023cm−3. The

filled symbols represent the screened Deutsch model obtained by Gregori et al.
[6], [7], while the empty symbols correspond to the screened HGK model.
Squares: Ti /Te = 1 (Γii = 2.31, Γee = 0.61). Circles: Ti /Te = 0.5
(Γii = 4.63, Γee = 0.61). Triangles: Ti /Te = 0.2 (Γii = 11.57, Γee = 0.61) [4]
(neλ3

ee < 1)
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Static structure factors for two temperature plasmas IV
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Figure: Static structure factors 6 and the screening charge q(k ′) for Be2+

plasma at Te = 20eV , T ′
e = 24.06eV , z = 2 and ne = 2.5× 1023cm−3. The

filled symbols represent the screened Deutsch model obtained by Gregori et al.
[6], [7], while the empty symbols correspond to the screened HGK model.
Squares: Ti /Te = 1 (Γii = 2.31, Γee = 0.61). Circles: Ti /Te = 0.5
(Γii = 4.63, Γee = 0.61). Triangles: Ti /Te = 0.2 (Γii = 11.57, Γee = 0.61) [4]
(neλ3

ee < 1).
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Static structure factors for two temperature plasmas V
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Figure: The charge-charge static structure factors Szz (5) with (6) for a
beryllium plasma with ne ≈ 2.5 · 1023cm−3, z ≈ 2, and Te = 20eV ,
T ′

e = 24.06eV . The filled symbols represent the screened Deutsch model
obtained on the basis of [7] , while the empty symbols correspond to the
screened HGK model. Squares: Ti /Te = 1 (Γii = 2.31, Γee = 0.61). Circles:
Ti /Te = 0.5 (Γii = 4.63, Γee = 0.61). Triangles: Ti /Te = 0.2 (Γii = 11.57,
Γee = 0.61) [4].
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The dynamic structure factor: the moment approach I

The partial dynamic structure factors (DSF) Srs (k) of the system
are defined as [1]:

Srs (k,ω) =
1

2πN

∫

e ıωt
< ρr (~k, t)ρs (−~k, 0) > dt. (8)

with the time dependent microscopic partial charge densities

ρr (~k , t) =
N

∑
i=1

exp (ı~k ·~r r
i (t)). (9)

We employ the method of moments suggested by V.M. Adamjan et.
al. [8, 10] which proved to provide a good agreement with the
numerical simulation data for of one- and two-component plasmas
[1].
The plasma is in a complete thermal equilibrium. The Hydrogen-like
Point Charges model, except the static characteristics determined
within the HGK model, is applied to determine the moments or the
sum rules.
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The dynamic structure factor: the moment approach II

The charge-charge dynamic structure factor Szz (k,ω) is defined via
the fluctuation-dissipation theorem (FDT) as

Szz (k,ω) = − h̄Imε−1(k,ω)

πΦ(k)[1− exp (−β h̄ω)]
, (10)

where Φ(k) = e2/ε0k
2 and ε−1(k,ω) is the inverse longitudinal

dielectric function of the plasma.

The charge-charge DSF is directly related to the charge-charge SSF as:

Szz (k) =
1

ne + ni

∫ ∞

−∞
Szz (k,ω)dω

=
See(k)− 2

√
zSei (k) + zSii (k)

z + 1
, (11)

where T ′
e = T ′

i = Te = Ti , T ′
ei = T ′

ee = T ′
e , ne = zni (z = 1 for

hydrogen-like plasmas).
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The dynamic structure factor: the moment approach III

In order to construct the inverse longitudinal dielectric function
within the moment approach one has to consider the frequency
moments of the loss function −Imε−1(k,ω)/ω:

Cν(k) = −π−1

∫ ∞

−∞
ων−1Imε−1(k,ω)dω, (12)

here with ν = 0, 2, 4. The odd-number moments vanish due to the
parity of the loss function and that the moment C2 = ω2

p expresses
the f -sum rule, ωp being the plasma frequency.

Then the Nevanlinna formula of the classical theory of moments [11]
expresses the response function

ε−1(k,ω) = 1+
ωp

2(ω + q)

ω(ω2 − ω2
2) + q(ω2 − ω1

2)
, (13)

in terms of a Nevanlinna-class q = q(k,ω) such that

lim
z→∞

q (k, z)

z
= 0 , Imz ≥ 0.
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The dynamic structure factor: the moment approach IV

The frequencies ω1 and ω2 are defined as respective ratios of the
moments Cν:

ω1
2 = C2/C0 = ωp

2[1− ε−1(k, 0)]−1
,

ω2
2 = C4/C2 = ωp

2[1+Q(k)], (14)

where ε−1(k, 0) can be determined from the classical form ( h̄ → 0)
of the FDT (thermal equillibrium) eq. (10) and the Kramers-Kronig
relation :

Reε−1(k,ω) = 1+
1

π
P.V .

∫ ∞

−∞

Imε−1(k,ω)

ω′ − ω
dω′ (15)

In this way, we get the following expression :

Reε−1(k, 0) = 1− 2Szz (k)
kDe

2

k2
, (16)

where Reε−1(k, 0) = ε−1(k, 0) = ε−1(k), Szz (k) is defined by (11).
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The dynamic structure factor: the moment approach V

The function defining the fourth moment is given in the Coulomb
HLPC approximation except the static characteristics, given within
the HGK model, by [10]:

Q(k) = K (k) + L(k) +H. (17)

It contains the kinetic contribution, particularly, for a classical
system:

K (k) = 3

(

k

kD

)2

, (18)

where kD
2 = kDe

2.
We approximate here the contribution due to the electron-ion
correlations by the expression for hydrogen within the modified RPA:

H =
4

3
rs
√

Γee [3Γ2
ee + 4rs + 4Γee

√
6rs ]

−1/2 (19)
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The dynamic structure factor: the moment approach VI

Finally, the contribution L(k) takes into account the electronic
correlations, we calculated it for the Coulomb potential:

L(k) =
1

2π2ne

∫ ∞

0

p2[See(p)− 1]f (p, k)dp, (20)

where

f (p, k) =
5

12
− p2

4k2
+

(

k2 − p2
)2

8pk3
ln

∣

∣

∣

∣

p + k

p − k

∣

∣

∣

∣

. (21)

In (20) the static structure factor is the one defined in (6) with the
screened e-e HGK potential.
The authors of [10] suggested to approximate q(k,ω) by its static
value q(k, 0) = ıh(k), connected to the static value Szz (k, 0) of the
dynamic structure factor through eq. (10):

h(k) =
(ω2

2 − ω1
2)ωp

2

πβφ(k)ω1
4Szz (k, 0)

> 0, (22)
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The dynamic structure factor: the moment approach VII

with S0
zz (k, 0) =

ne

k

√

m
2πkBT

so that

the relative dynamic structure factor takes the following form:

Szz (k,ω)

Szz (k, 0)
=

β h̄

[1− exp (−β h̄ω)]

× ωh2(k)ω1
4

ω2(ω2 − ω2
2) + h2(k)(ω2 − ω1

2)
, (23)

with the more simplified expressions for h(k):

h(k) =
ε0

√
2πkBTk3ωp

2(ω2
2 − ω1

2)

πβ
√

mnee2ω1
4

, (24)
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The dynamic structure factor: the moment approach VIII

and the characterisitic frequencies ω1(k), ω2(k):

ω1
2 = C2/C0 =

ωp
2k2

2kDe
2Szz (k)

,

ω2
2 = C4/C2 = ωp

2[1+K (k) + L(k) +H ], (25)
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The dynamic structure factor: the moment approach IX
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Figure: The relative charge-charge DSFs of alkali plasmas determined within
the HLPC model but with the HGK static characteristics in comparison with
the results of [10] obtained within the same HLPC model but with the
Coulomb static characteristics at k = 0.767/ree , (a) Γii = 0.5, Present results:
T = 30000K , ne = 1.741 · 1020cm−3, Adamjan et al.: T = 1574573K ,
ne = 2.5 · 1025cm−3 and (b) Γii = 2, Present results: T = 30000K ,
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The dynamic structure factor: the moment approach X

ne = 1.11 · 1022cm−3, Adamjan et al.: T = 157457K , ne = 1.61 · 1024cm−3.
As the frequency scale we use the electron plasma frequency
ωp =

√

nee2/ε0me [4].

-4 -3 -2 -1 0 1 2 3 4 5
0,0

0,2

0,4

0,6

0,8

1,0

 

S
(k

,
)/

S
(k

,0
)

p

K+

HLPC

Na+

Cs+

Li+

Rb+

a)

-2 -1 0 1 2 3
0,0

0,2

0,4

0,6

0,8

1,0

1,2

S
(k
,
)/
S
(k
,0
)

p

K+

HLPC

Na+

Cs+

Li+

Rb+

b)

Figure: The relative charge-charge DSFs of alkali plasmas described above but
at k = 1.534/ree , (a) Γii = 0.5, (b) Γii = 2 [4].
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Taking into account the ion structure I

In a frame of the Adamjan’s et al. HLPC model [10] one can include the
ion structure through the function defining the fourth moment:

QHGK (k) = K (k) + LHGK (k) +HHGK
. (26)

Here, the kinetic distribution is taken the same as in (18). We
approximate here the contribution due to the electron-ion HGK
correlations by the following expression:

HHGK =
hei (r = 0)

3
=

gei (r = 0)− 1

3
≃ −1

3
. (27)

The contribution LHGK (k) takes into account the electronic correlations,
we calculated it for the HGK potential:

LHGK (k) =
1

2π2ne

∫ ∞

0

p2[See(p)− 1]f HGK (p, k)dp, (28)

where
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Taking into account the ion structure II

f HGK (p, k) =
∫

1

−1

(ps − k)2

p2 − 2psk + k2
ζee(

√

p2 − 2pks + k2)
ds

2
− ζee(p)

3
(29)

where ζee(p) is to be determined from the Deutsch potential
ϕee(p) = Φ(p)ζee(p), where Φ(p) = 4πe2/4πε0p

2 - Fourier transform
of the Coulomb potential.
The equations (22-24) and ω1

2 in the equation (25) remain the same.
But the ω2

2 will turn into :

ω2
2 = C4/C2 = ωp

2[1+K (k) + LHGK (k) +HHGK ]. (30)
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Taking into account the ion structure III
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Figure: The relative charge-charge DSFs of alkali plasmas determined within
HLPC model with the HGK static characteristics in comparison with the results
of [10] obtained within the same HLPC model but with the Coulomb static
characteristics at k = 1.074 · ree . (a) Γii = 0.5, Present results: T = 30000K ,
ne = 1.741 · 1020cm−3, Adamjan et al.: T = 1574573K , ne = 2.5 · 1025cm−3

and (b) Γii = 2, Present results: T = 30000K , ne = 1.11 · 1022cm−3, S. V.
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Taking into account the ion structure IV

Adamjan et al.: T = 157457K , ne = 1.61 · 1024cm−3, where the H, L are
defined as (19) and (20), (21).
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Figure: The relative charge-charge DSFs of alkali plasmas determined within
HGK model with the HGK static characteristics in comparison with the results
of [10] obtained within the same HLPC model but with the Coulomb static
characteristics at k = 1.074 · ree . (a) Γii = 0.5, Present results: T = 30000K ,
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Taking into account the ion structure V

ne = 1.741 · 1020cm−3, Adamjan et al.: T = 1574573K , ne = 2.5 · 1025cm−3

and (b) Γii = 2, Present results: T = 30000K , ne = 1.11 · 1022cm−3,S. V.
Adamjan et al.: T = 157457K , ne = 1.61 · 1024cm−3, where the HHGK , LHGK

are defined as (27) and (28), (29)
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Conclusion I

The partial and charge-charge SSFs have been calculated for alkali
and Be2+ plasmas using the method described and discussed by
Gregori et al. 2006, 2007. The DSFs for alkali plasmas have been
calculated using the moment approach developed by V. M. Adamjan
et al.1983, S. V. Adamjan et al. 1993.

In both methods the screened Hellmann-Gurskii-Krasko
pseudopotential with the soft ion core, obtained on the basis of
Bogoljubov’s method, taking into account not only the
quantum-mechanical but also the repulsion due to the Pauli
exclusion principle has been used.

DSFs have been calculated within the HLPC and HGK model. The
HLPC model was treated within the HGK model through the fourth
moment of the loss function and with the static characteristics also
determined for the screened HGK model. The results were compared
to those of Adamjan et al. 1993 found within the HLPC model as
well but with the pure Coulomb static characteristics.
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Conclusion II

We have detected deviations (in the values of the SSFs) from results
obtained by Gregori et al. while we have noticed that the present
dynamic results are in a reasonable agreement with those of
Adamjan et al.: at higher values of k and with increasing k the
curves damp while at lower values of k, and especially at higher Γee ,
we observe sharp peaks also reported by Adamjan et al. At lower Γee

the curves for Li+, Na+, K+, Rb+ and Cs+ do not differ while at
higher Γee the curves split. In alkali plasmas the plasmon peaks are
more pronounced especially at higher Γii and shifted in the direction
of lower ω/ωp than those considered within the Coulomb HLPC
model with the Coulomb static characteristics. As the number of
shell electrons increases from Li+ to Cs+ the curves shift in the
direction of low absolute value of ω/ωp and their heights diminish.
The difference is due to the short range structure which we took into
account by the HGK model compared to the HLPC model.
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