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We consider a model OCP consisting of dust particles of invariable
charge and size and with the e¤ective interaction screened by other
subsystems; the charges, masses, number densities and temperature
of each species are: Zae, ma, na, and Ta (a = e, i , d). The
dimensionless parameter

Γ = βd (Zd e)
2 /ad

β�1d = kBTa , ad =
3
p
3/4πnd

can be Γ & 1 under normal conditions: the traditional approaches are
inapplicable and the interaction e¤ects determine the physical
properties of dusty plasmas, in particular, the dust acoustic waves
(DAW) dispersion.
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The OCP static properties like the static structure factor (SSF),
S (k), can be found numerically, e.g., within the HNC approximation.

We wish to outline a mathematical approach which can be employed
in this context and in other �elds of research.

We will compare the "dynamic" results obtained within this moment
approach (based on the sum-rules and other exact relations) to those
of the HD model, Pis�ma Zh. Eksp. Teor. Fiz., 91 (2010) 626-633.
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Problem
Let f (t) be a positively de�nite integrable function (distribution density),
e.g., given only by a set of its numerical values.
Find an analytic representation of f (t) such that f (t) were an imaginary
part of the Nevanlinna class (response) function

F (z) =
1
π

Z ∞

�∞

f (t)
t � z dt, Im z > 0 (1)

analytic in Im z > 0, continuous on the real axis Im z = 0 and such that

f (t) = Im
�
lim
η#0
F (t + iη)

�
> 0.
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Fact
Assume that we are able to compute some power moments of the function
in question,

ck =
1
π

Z ∞

�∞
tk f (t) dt , k = 0, 1, ..., 2n, (2)

then, asymptotically, along any ray in Im z � 0,

F (z ! ∞) = � 1
πz

Z ∞

�∞

f (t)
1� t/z dt '

' �c0
z
� c1
z2
� c2
z3
� � � � � c2n

z2n+1
+ o

�
1

z2n+1

�
. (3)
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The above problem is a Hamburger truncated problem of moments
[1] solvable i¤ the set of moments fc0, ..., c2ng is positive de�nite.
Then this problem has two in�nite sets of solutions: canonical and
non-canonical.

The non-canonical solutions are continuous and are described by
Nevanlinna�s formula,Z ∞

�∞

f (t)dt
z � t =

En+1 (z) +Qn (z)En (z)
Dn+1 (z) +Qn (z)Dn (z)

, (4)

where the polynomials fDν (z)g can be obtained from the basis�
1, z , z2, . . .

	
by the Gramm-Schmidt procedure with the weight

f (t), and fEν (z)g are the conjugate polynomials; the parameter
function Qn (z) also belongs to the class of response functions and is
such that limz!∞ Qn (z) /z = 0, Im z > 0.
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Fact
We have applied, and quite successfully, the moment approach to a
number of equilibrium strongly coupled Coulomb systems, see some of our
latest publications and references therein:

1 Phys. Rev. E, 81 (2010) 026402;
2 Phys. Rev. Lett., 101 (2008) 075002;
3 Phys. Rev. E, 76 (2007) 026403;
4 Phys. Rev. B, 75 (2007) 115109;
5 Contrib. Plasma Phys. 43 (2003) 252- 257.
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The starting point in the application of the method of moments [2] to
dusty plasmas is the assumption on the existence of the system
inverse dielectric function, the genuine response function of the
system we consider, ε�1 (k,ω). This method takes into account the
(convergent) sum rules and other exact relations, like the
compressibility sum rule, automatically.

The sum rules we employ are actually the (positive) power frequency
moments of the loss function

L (k,ω) = � Im ε�1 (k,ω)
ω

: (5)

Cν (k) =
1
π

Z ∞

�∞
ωνL (k,ω) dω, ν = 0, 2, 4. (6)

Notice that the odd-order moments vanish due to the symmetry of
the loss function.
Let us introduce also the frequencies ω1 = ω1(k) and ω2 = ω2(k):

ω2
1 = ω2

1 (k) = C2/C0 (k) , ω2
2 = ω2

2 (k) = C4 (k) /C2 . (7)
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The interaction potential between the dust particles screened by the
environment in the neutral OCP model of dusty plasmas is usually
approximated by the Yukawa potential,

ϕY (r) =
Z 2d e

2

r
exp

�
� r

λ

�
, (8)
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We employ the two-exponent model potential [3],

ϕ (r) =
Z 2d e

2

r
(θ1 exp (�k1r) + θ2 exp (�k2r)) , (9)

which takes into account the external sources, the sinks, the
recombination, etc. The temperature is that of the dust subsystem,
while other species�, the environment, temperatures, might be
di¤erent.
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Here
θ1 + θ2 = 1

while

1 the screening parameter k1 � kd , the Debye screening parameter due
to the environment (electrons and ions) and the sinks, and

2 k�12 =
q

Di (1+βi/βe )
2βein0

is the average travel of an ion in the process of
ambipolar di¤usion during the recombination time, Di is the ionic
di¤usion coe¢ cient, βei is the electron�ion recombination coe¢ cient
and n0 is the concentration of ions or electrons in the non-perturbed
plasma.
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One can use this e¤ective potential to construct the interaction
contribution into the dust OCP Hamiltonian in the second-quantization
picture:

Ĥ = K̂ + Ĥint = (10)

=
�h2

2md
∑
q
q2a+q aq +∑

q
ϕ (q) (nqn�q � n0) , (11)

where

ϕ (k) = 4πe2Z 2d

�
θ1

k2 + k21
+

θ2
k2 + k22

�
= φ (k) ζ (k) , (12)

φ (k) =
4πe2Z 2d
k2

.
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The convergence of the moment C0 (k) follows, by virtue of the
Kramers-Kronig dispersion relations, from the existence of the static
inverse dielectric function,

ε�1(k, 0) = lim
η#0

ε�1(k, iη) = 1+
Z ∞

�∞
Imε�1 (k,ω)

dω

πω
= (13)

= 1+
Z ∞

0
Imε�1 (k,ω)

d
�
ω2
�

πω2 = 1� C0 (k) . (14)
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Additionally, if we refer to the classical version of the
�uctuation-dissipation theorem:

L (k,ω) = πβdφ (k) S (k,ω) , (15)

where S (k,ω) is the corresponding dust dynamic structure factor, then,

C0 (k) =
k2g
k2
S (k) , kg =

q
4πe2βdZ

2
d nd , (16)

and the dust static structure factor can be calculated independently, e.g.,
in the HNC or MD approximations.
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For the power frequency moments (6) directly from the Kubo linear
reaction theory formula we get the f -sum rule:

C2 (k) =
ndk2

md
φ (k) =

4πZ 2d e
2nd

md
= ω2

pd . (17)

And neglecting quantum corrections,

C4 (k) = ω4
pd (ζ (k) + V (k) + U (k)) , (18)

where
V (k) = 3k2/k2g = k

2c2s /ω2
pd , (19)

U (k) =
1

2π2nd

Z ∞

0
p2 (S (p)� 1) ∑

i=1,2
fi (p, k) dp, (20)

coincides with the QLCA model "dynamic matrix" of [4] for the Yukawa
model.
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Here, the angular factors are

fi (p, k) =
3
4
� p

2 + k2i
4k2

� 1
3

p2

p2 + k2i
+

+

�
p2 + k2i � k2

�2
16pk3

ln
k2i + (p + k)

2

k2i + (p � k)
2 .

We have computed the moments C0 (k) and C4 (k) for the potential
ϕ (k).

The dust radial distribution function (RDF) and the static structure
factor, S (k), were calculated by an adequate solution of the
Ornstein-Zernike equation in the HNC approximation and by the
method of molecular dynamics (MD).
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We have also estimated the static dielectric function from the
compressibility sum rule (14) and the FDT (16):

ε(k, 0) =
k2

k2 � k2gS (k)
. (21)

We present, as an example, the results for di¤erent values of the pressure
and for nd = 105 cm�3, kg = 511.38 cm�3:
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Since
1
π

Z ∞

�∞

L(k,ω)
z �ω

dω =

= � 1
πz

Z ∞

�∞

Im ε�1 (k,ω)
ω

+
1

πz

Z ∞

�∞

Im ε�1 (k,ω)
ω� z dω ,

we have the canonical solution of the moment problem:

ε�1 (k, z) = 1+
ω2
pd (z +Q2)

z (z2 �ω2
2) +Q2 (z

2 �ω2
1)
. (22)
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It is quite clear from Eq. (22) that the parameter function Q2(k, z)
modi�es both the position and the width of the lines in the spectrum
of collective excitations of the system to be determined from the
dispersion equation

z(z2 �ω2
2) +Q2(z

2 �ω2
1) = 0. (23)

It is also important that (22) satis�es the sum rules independently of
the choice of the parameter function Q2(k, z), such that

Q2(k, z) = b (k) + ih (k) +
Z ∞

�∞

dg(t)
t � z , b 2 R , h > 0, (24)

lim
z!∞

Q2(k, z)/z = 0,
Z ∞

�∞

dg(t)
1+ t2

< ∞, Im z > 0. (25)

If we neglect the processes of energy absorption completely, we should
put Q2(k, z) = i0+. Mathematically this means the application,
instead of the Nevanlinna formula (22), of the canonical solution.
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On the other hand, the corresponding hydrodynamic model leads [5],
for the e¤ective biexponential potential (12), to the following
dispersion equation:

ω (ω+ iνd ) = k
2
�
c2 +ω2

pd

�
θ1

k2 + k21
+

θ2
k2 + k22

��
� ω2

HD (k) ,

(26)
where

νd =
6πη0Rd
md

, c2 =
1
md

�
∂p
∂nd

�
. (27)

η0 being the neutral gas dynamic viscosity and p - the pressure in the
system.
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The real part of the corresponding solution is displayed in the following
�gure for Te = Ti = 300 K , Rd = 10µm, νd = ωpd = 13.10 s�1,
Zd = �193.37, θ1 � θ2, k1 = 2190.31 cm�1, for di¤erent values of the
smaller screening parameter: 1 �p = 1 Torr , k2 = 26.61 cm�1, 2 �
p = 10 Torr , k2 = 84.13 cm�1, 3 �p = 100 Torr , k2 = 266.07 cm�1, 4 �
p = 760 Torr , k2 = 733.49 cm�1.

100 1000
0.0

0.2

0.4

0.6

ω1/ωpd

k (cm1)

 1
 2
 3
 4
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These results imply the possibility of observation of two di¤erent dust
acoustic waves with di¤erent velocities and group velocities:
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For large values of Γ we should take into account the non-ideality in the
EOS and solve the "non-ideal" HD dispersion equation

ω (ω+ iνd ) = k
2
�
1
md

�
∂p
∂nd

�
T
+ω2

pd

�
θ1

k2 + k21
+

θ2
k2 + k22

��
: (28)
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We see that the non-ideality does not remove the posibility of observation
of two velocities for the DAWs.
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We have also studied the simpli�ed dispersion equation of the method of
moments

ω (ω+ iνd ) = ω2
pd [ζ (k) + V (k) + U (k)] =

= c2s k
2 +ω2

pd

�
U (k) + k2

�
θ1

k2 + k21
+

θ2
k2 + k22

��
, (29)

Filippov et.al. () DAW in compressed dusty plasmas 12/10 26 / 35



wherefrom we found the real,
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and imaginary part of the solution of this simpli�ed version of the
dispersion equation stemming from the method of moments,
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We observe some numerical di¤erence between the dispersion
relations stemming from the simpli�ed version of the method of
moments and the hydrodynamic model.
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To resolve this discrepancy we approximated the Nevanlinna parameter
function by its static value,

Q2 (k, 0) = i
νd
2

ω2
2 (k)

ω2
1 (k)

and solved the cubic dispersion equation (23)

z(z2 �ω2
2) +Q2(z

2 �ω2
1) = 0.
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The results, at least for lower values of the ionization velocity, are
encouraging. Precisely, for 1� nd = 106cm�3, 1� 5 � 105cm�3,
3� 105cm�3, 4� 104cm�3, with the hydrodynamic model result displayed
as solid lines and the real part of the solution of the cubic equation shown
as dashed lines (Qion = 1012cm�3s�1, p = 760 Torr , νd = 4.1s�1) we
obtained a reasonable agreement between these two approaches:
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Additionally, the cubic equation

z(z2 �ω2
2) +Q2(z

2 �ω2
1) = 0.

generated a third, purely imaginary, root iωI (k) which can be interpreted
as the di¤usive non-propagating mode (for the same conditions):
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Other models for the Nevanlinna parameter function are being studied
currently.

Experimental veri�cation of our results is also planned at the TRINITI.
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