GENERALIZED BETH-UHLENBECK EOS FOR THE NONIDEAL QUARK PLASMA

David Blaschke

Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

Punchline:

- Hagedorn: "A system of interacting elementary particles can be reformulated as a system of noninteracting resonances" → Resonance Gas
- Bound states can be treated as a new species \implies chemical picture
- Physical picture: there are also scattering states! EoS with bound and scattering states: Beth-Uhlenbeck EoS (1936/37)
- Generalized Beth-Uhlenbeck EoS includes the Mott transition: bound states => resonances in the scattering continuum

Seminar on Nonideal Plasma Physics; Moscow, 23.-24.11.2011

PARTITION FUNCTION FOR QUANTUM CHROMODYNAMICS (QCD)

• Partition function as a Path Integral (imaginary time $\tau = i t$, $0 \le \tau \le \beta = 1/T$) \Rightarrow PS I

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \exp\left\{-\int_{0}^{\beta} d\tau \int_{V} d^{3}x \,\mathcal{L}_{QCD}(\psi, \bar{\psi}, A)\right\}$$

• QCD Lagrangian, non-Abelian gluon field strength: $F^a_{\mu\nu}(A) = \partial_{\mu}A^a\nu - \partial_{\nu}A^a_{\mu} + g f^{abc}[A^b_{\mu}, A^c_{\nu}]$

$$\mathcal{L}_{QCD}(\psi,\bar{\psi},A) = \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} - igA_{\mu}) - m - \gamma^{0}\mu]\psi - \frac{1}{4}F^{a}_{\mu\nu}(A)F^{a,\mu\nu}(A)$$

• Numerical evaluation: Lattice gauge theory simulations (hotQCD, Wuppertal-Budapest)

- Equation of state: $\varepsilon(T) = -\partial \ln Z[T, V, \mu] / \partial \beta$
- Phase transition at $T_c = 155 \text{ MeV}$
- Problem: Interpretation ?

 $\varepsilon/T^4 = \frac{\pi^2}{30}N_{\pi} \sim 1$ (ideal pion gas) $\varepsilon/T^4 = \frac{\pi^2}{30}(N_G + \frac{7}{8}N_Q) \sim 15.6$ (quarks and gluons)

Hadron resonance gas

PARTITION FUNCTION FOR QUANTUM CHROMODYNAMICS (QCD)

• Partition function as a Path Integral (imaginary time $\tau = i t$, $0 \le \tau \le \beta = 1/T$) \Rightarrow PS I

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \exp\left\{-\int_{0}^{\beta} d\tau \int_{V} d^{3}x \mathcal{L}_{QCD}(\psi, \bar{\psi}, A)\right\}$$

• QCD Lagrangian, non-Abelian gluon field strength: $F^a_{\mu\nu}(A) = \partial_{\mu}A^a\nu - \partial_{\nu}A^a_{\mu} + g f^{abc}[A^b_{\mu}, A^c_{\nu}]$

$$\mathcal{L}_{QCD}(\psi,\bar{\psi},A) = \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} - igA_{\mu}) - m - \gamma^{0}\mu]\psi - \frac{1}{4}F^{a}_{\mu\nu}(A)F^{a,\mu\nu}(A)$$

• Numerical evaluation: Lattice gauge theory simulations (hotQCD, Wuppertal-Budapest)

$$P_{\text{tot}}(T, \{\mu_j\}) = P_{\text{PNJL}}(T, \{\mu_i\}) + \sum_{r=M, B} \delta_r g_r \int ds \, A_r(s, m_r; T) \int \frac{d^3 p}{(2\pi)^3} T \ln\left\{1 + \delta_r \exp\left(\frac{\sqrt{p^2 + s} - \mu_r}{T}\right)\right\}$$

Spectral function for hadronic resonances:

$$A_r(s,m;T) = N_s \frac{m\Gamma_r(T)}{(s-m^2)^2 + m^2\Gamma_r^2(T)}$$

Ansatz motivated by chemical freeze-out model:

$$\Gamma_r(T) = \tau_r^{-1}(T) = \sum_h \lambda < r_r^2 >_T < r_h^2 >_T n_h(T)$$

Apparent phase transition at $T_c \sim 165 \text{ MeV}$

Hadron resonances present up to $T_{\rm max} \sim 250 \ {\rm MeV}$

Blaschke & Bugaev, Fizika B13, 491 (2004) Prog. Part. Nucl. Phys. 53, 197 (2004) Blaschke, Prorok & Turko, in preparation

Hadronic states above T_c ! See also: Ratti, Bellwied et al., arXiv:1109.6243 [hep-ph]

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

• Partition function as a Path Integral (imaginary time $\tau = i t$)

$$Z[T,V,\mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int^{\beta} d\tau \int_{V} d^{3}x [\bar{\psi}[i\gamma^{\mu}\partial_{\mu} - m - \gamma^{0}(\mu + \lambda_{8}\mu_{8} + i\lambda_{3}\phi_{3}]\psi - \mathcal{L}_{\text{int}} + U(\Phi)]\right\}$$

Polyakov loop: $\Phi = N_c^{-1} \text{Tr}_c[\exp(i\beta\lambda_3\phi_3)]$ Order parameter for deconfinement

• Current-current interaction (4-Fermion coupling) and KMT determinant interaction

$$\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M(\bar{\psi}\Gamma_M\psi)^2 + \sum_D G_D(\bar{\psi}^C\Gamma_D\psi)^2 - K[\det_f(\bar{q}(1+\gamma_5)q) + \det_f(\bar{q}(1-\gamma_5)q)]$$

Bosonization (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}M_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \, \mathrm{e}^{-\sum_{M,D} \frac{M_M^2}{4G_M} - \frac{|\Delta_D|^2}{4G_D} + \frac{1}{2} \mathrm{Tr} \, \ln S^{-1}[\{M_M\}, \{\Delta_D\}, \Phi] + U(\Phi) + V_{\mathrm{KMT}}}$$

- Collective quark fields: Mesons (M_M) and Diquarks (Δ_D); Gluon mean field: Φ
- Systematic evaluation: Mean fields + Fluctuations
 - Mean-field approximation: order parameters for phase transitions (gap equations)
 - Lowest order fluctuations: hadronic correlations (bound & scattering states)
 - Higher order fluctuations: hadron-hadron interactions

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

• Partition function as a Path Integral (imaginary time $\tau = i t$)

$$Z[T, V, \mu] = \int \mathcal{D}\bar{q}\mathcal{D}q \exp\left\{-\int^{\beta} d\tau \int_{V} d^{3}x [\bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{0} - \gamma^{0}\mu)q + \sum_{M=\pi,\sigma} G_{M}(\bar{q}\Gamma_{M}q)^{2}]\right\}$$

- Couplings: $G_{\pi} = G_{\sigma} = G_S$ (chiral symmetry)
- Vertices: $\Gamma_{\sigma} = \mathbf{1}_D \otimes \mathbf{1}_f \otimes \mathbf{1}_c$; $\Gamma_{\pi} = i\gamma_5 \otimes \vec{\tau} \otimes \mathbf{1}_c$
- Bosonization (Hubbard-Stratonovich Transformation)

$$\exp\left[G_S(\bar{q}\Gamma_{\sigma}q)^2\right] = \text{const.} \int \mathcal{D}\sigma \exp\left[\frac{\sigma^2}{4G_S} + \bar{q}\Gamma_{\sigma}q\sigma\right]$$

 \bullet Integrate out quark fields \longrightarrow bosonized partition function

$$Z[T, V, \mu] = \int \mathcal{D}\sigma \mathcal{D}\pi \exp\left\{-\frac{\sigma^2 + \pi^2}{4G_S} + \frac{1}{2} \operatorname{Tr} \ln S^{-1}[\sigma, \pi]\right\}$$

• Systematic evaluation: Mean fields + Fluctuations

- Mean-field approximation: order parameters for phase transitions (gap equations)

- Lowest order fluctuations: hadronic correlations (bound & scattering states)

MEAN FIELD PLUS (GAUSSIAN) FLUCTUATIONS

• Separate the mean-field part of the quark determinant

Tr
$$\ln S^{-1}[\sigma, \pi] = \text{Tr } \ln S_{\text{MF}}^{-1}[m] + \text{Tr } \ln[1 + (\sigma + i\gamma_5 \vec{\tau} \vec{\pi})S_{\text{MF}}[m]]$$

• Mean-field quark propagator

$$S_{\rm MF}(\vec{p}, i\omega_n; m) = \frac{\gamma_0(i\omega_n + \mu) - \vec{\gamma} \cdot \vec{p} + m}{(i\omega_n + \mu)^2 - E_p^2}$$

- Expand the logarithm: $\ln(1+x) = -\sum_{n=1}^{\infty} (-1)^n x^n / n = x x^2/2 + \dots$
- Thermodynamic potential in Gaussian approximation

$$\Omega(T,\mu) = -T \ln Z(T,\mu) = \Omega_{\rm MF}(T,\mu) + \Omega_{\rm M}^{(2)}(T,\mu) + \dots$$

$$\Omega_{\rm M}^{(2)}(T,\mu) = \frac{N_M}{2} \int \frac{d^2p}{(2\pi)^3} \frac{1}{\beta} \sum_n e^{i\nu_n \eta} \ln\left[1 - 2G_S \Pi_M(\vec{p}, i\nu_n)\right] , \quad N_\sigma = 1, \ N_\pi = 3$$

Mesonic polarization loop

$$\Pi_M(\vec{p}, i\nu_n) = -\frac{1}{\beta} \sum_{n'} e^{i\nu_{n'}\eta} \int \frac{d^2k}{(2\pi)^3} \operatorname{Tr}\left[\Gamma_M S_{\mathrm{MF}}(-\vec{k}, -i\omega_{n'})\Gamma_M S_{\mathrm{MF}}(\vec{k}+\vec{p}, i\omega_{n'}+i\nu_n)\right]$$

GENERALIZED BETH-UHLENBECK EOS: NJL MODEL RESULTS

Generalized Beth-Uhlenbeck approach:

- Deuterons in nuclear matter Schmidt, Röpke, Schulz, Ann. Phys. (1990)
- Mesons in quark matter Hüfner, Klevansky, Zhuang, Voß, Ann. Phys. (1994)

P. Zhuong et al. / Nuclear Physics A 576 (1994) 525-552

P. Zhuang et al. / Nuclear Physics A 576 (1994) 525-552

GEN. BETH-UHLENBECK EOS: NONLOCAL PNJL RESULTS

NONLOCAL PNJL MODEL VS. LATTICE QCD

$$S_E = \int d^4x \, \left\{ \bar{\psi}(x) \left(-i\gamma_\mu D_\mu + \hat{m} \right) \psi(x) - \frac{G_S}{2} [j_a(x)j_a(x) - j_P(x)j_P(x)] + \, \mathcal{U}\left(\Phi[A(x)] \right) \right\} \,,$$

Parappilly et al., Phys. Rev. D

Nonlocal currents

$$j_a(x) = \int d^4 z \ g(z) \ \bar{\psi} \left(x + \frac{z}{2} \right) \ \Gamma_a \ \psi \left(x - \frac{z}{2} \right)$$
$$j_P(x) = \int d^4 z \ f(z) \ \bar{\psi} \left(x + \frac{z}{2} \right) \ \frac{i\overleftrightarrow{\partial}}{2 \ \kappa_p} \ \psi \left(x - \frac{z}{2} \right)$$

Formfactors fitted to Lattice results

$$g(q) = \frac{1 + \alpha_z}{1 + \alpha_z} \frac{\alpha_m f_m(q) - m \alpha_z f_z(q)}{\alpha_m - m \alpha_z}$$
$$f(q) = \frac{1 + \alpha_z}{1 + \alpha_z f_z(q)} f_z(q)$$
$$f_m(q) = \left[1 + \left(q^2 / \Lambda_0^2\right)^{3/2}\right]^{-1}$$
$$f_z(q) = \left[1 + \left(q^2 / \Lambda_1^2\right)\right]^{-5/2}.$$

Noguera, Scoccola, PRD 78, 114002 (2008)

NONLOCAL PNJL MODEL VS. LATTICE QCD (II)

NONLOCAL PNJL MODEL: PHASE DIAGRAM AND CP

FROM DIQUARKS TO BARYONS (I)

The inverse diquark propagator is then obtained from

$$(S_D^A)^{-1}(k_0,k) = \frac{1}{4G_D} - \Pi_D^A(k_0,k) \quad , \quad \Pi_D^A(k_0,k) = \int \frac{d^4q}{(2\pi)^4} S_Q(q) \Sigma^A(k) S_Q(q-k) \Sigma^A(k)$$

Propagator can be expressed via the spectral density after analytic continuation

$$S_D^A(z,k) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \, \frac{\varrho_D^A(\omega,k)}{z-\omega} \,, \ \varrho_D^A(\omega,k) = \lim_{\varepsilon \to 0} \frac{8G_D^2 \mathrm{Im} \Pi_D^A(\omega+i\varepsilon,k)}{[1-2G_D \mathrm{Re} \Pi_D^A(\omega+i\varepsilon,k)]^2 + [2G_D \mathrm{Im} \Pi_D^A(\omega+i\varepsilon,k)]^2}$$

Similar, baryon propagator and spectral density

$$S_B^{-1}(P_0, P) = \frac{1}{G_B} - \Pi_B(P_0, P) \quad , \quad \Pi_B(P_0, P) = \sum_{A=2,5,7} \int \frac{\mathrm{d}k^4}{(2\pi)^4} S_Q^{11,A}(P-k) S_D^A(k)$$

Further details:

Wang, Wang, Rischke, PLB (2011); arXiv:1008.4029 [nucl-th] Zablocki, Blaschke, Buballa, in preparation (2011) Integrating the spectral density over the coupling constant leads to

$$\int_0^G \frac{dg}{g^2} \rho_{\rm B}^g(\omega, \mathbf{P}) = \frac{i}{2} \log \left(\frac{\frac{1}{G} - \Pi_{\rm B}(\omega + i\delta, \mathbf{P})}{\frac{1}{G} - \Pi_{\rm B}(\omega - i\delta, \mathbf{P})} \right) \equiv \delta_{\rm B}(\omega, \mathbf{P}).$$

The in-medium phase shift $\delta_{\mu,T}(\omega, \mathbf{P})$ is the argument of the dynamic pair susceptibility

$$\frac{\frac{1}{G} - \Pi_{\rm B}(\omega \pm i\delta, \mathbf{P})}{\left|\frac{1}{G} - \Pi_{\rm B}(\omega, \mathbf{P})\right|} = e^{\mp i\delta_{\rm B}(\omega, \mathbf{P})}.$$

Thermodynamical potential in Beth-Uhlenbeck type form

$$\Omega_{\rm B}^{(2)}(T,\mu) = -d_B \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \tilde{f}_B(\omega) \delta_{\rm B}(\omega,\mathbf{P}),$$

$$= d_B \int_0^\infty \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \left[1 - f_{\rm B}(\omega) - f_{\bar{\rm B}}(\omega)\right] \delta_{\rm B}(\omega, \mathbf{P}),$$

$$= d_B \int_0^\infty \frac{d\omega}{\pi} \frac{d\mathbf{P}}{(2\pi)^3} \left\{\omega + T \ln[1 + e^{-(\omega - 3\mu)/T}] + T \ln[1 + e^{-(\omega + 3\mu)/T}]\right\} \frac{\partial \delta_{\rm B}(\omega, \mathbf{P})}{\partial \omega},$$

Pole approximation \rightarrow Walecka model: $\Omega_{tot} = \Omega_{MF} + \Omega_B^{(2)}$ See also Abuki, NPA 791 (2007) 117 and Zablocki, D.B., Buballa, in prep. (2011)

COMPOSE - COMPSTAR ONLINE SUPERNOVA EOS

Reference manual version 1.0

CompOSE

$\mathbf{Comp} \mathbf{Star} \ \mathbf{Online} \ \mathbf{Supernov} \\ \mathbf{E} \mathbf{quations} \ \mathbf{of} \ \mathbf{State} \\$

fertilising the fields of nuclear physics and astrophysics

 $www.compstar-esf.org/compose^* \\ compose@compstar-esf.org^\dagger$

European Science Foundation Research Networking Program CompStar

November 22, 2010

General Requirements:

- **Densities:** $10^{-8} \le n/n_0 \le 10$
- Temperatures: $0 \le T \le 200 \text{ MeV}$
- Proton fractions: $0 \le Y_p \le 0.6$; $\beta = 1 2Y_p$

New Developments:

- Dissolution of clusters due to Pauli blocking
- Realistic high-density modeling: DD-RMF/3FSC PNJL
- Thermodynamics of 1st order PT; pasta phases

I. For Contributors:

- How to prepare EoS tables
- How to submit EoS tables
- Extending CompOSE

II. For Users:

- Hadronic EoS: Statistical, Skyrme, DBHF, ...
- Quark Matter EoS: Bag, PNJL, ...
- Phase transition: Maxwell, Gibbs, Pasta, ...

INVITATION: CONTRIBUTE TO THE NICA WHITE PAPER

Draft v 3.03 June 20, 2010

SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

http://theor.jinr.ru

Contents

I. Ge	eneral aspects	11	
1.	1. MPD at the JINR NICA in the landscape of heavy ion projects		
	M. Gazdzicki	11	
2.	Comments on the Mixed Phase Physics (MPP)		
	Nu Xu	13	
3.	Experimental advantages of collider over fixed target		
	B. Mohanty	16	
4.	Observables and open problems for NICA		
	E. Bratkovskaya ^{p} and W. Cassing ^{b}	18	
5.	Exploring high-density baryonic matter: Maximum freeze-out density		
	J. Randrup ^a and J. Cleymans ^b	20	
6.	Nuclear matter physics at NICA		
	Peter Senger	22	
II. Ph	ases of QCD matter at high baryon density	36	
1.	Comments on a phase diagram and fluctuations		
	M. Stephanov	36	
2.	Search for manifestation of medium effects in dense, excited hadron-quark matter		
	D. Voskresensky	39	
3.	Searching for evidence of spinodal decomposition		
	J. Randrup	41	
4.	Supercooled quark-gluon phase?		
	Yu. Ivanov	42	
5.	Hadronic signals of non-equilibrium phase transition		
	B. Tomášik	44	
6.	Rigorous investigation of surface tension and finite width of the QGP bags at		
	NICA energies		
	NICA energies K. Bugaev	45	
7.	NICA energies <i>K. Bugaev</i> Isospin effects on phase transitions of hadronic to quark matter	45	

SUMMARY

- Generalized Beth-Uhlenbeck approach as microphysical basis to account for hadron dissociation (Mott effect) at extreme temperatures and densities
- Benchmark: pion and sigma Mott effect within NJL model, revised within nonlocal PNJL model
- Nonlocal PNJL model calibrated with lattice quark propagator data, EoS at finite T and μ , Phase diagram with critical point
- Application of GBU to interprete chemical freeze-out as Mott-Anderson localization
- Effective GBU model description: Mott-Hagedorn resonance gas + PNJL model describes Lattice QCD thermodynamics

OUTLOOK: NEXT STEPS ...

- Walecka model as limit of PNJL model: chiral transition effects in nuclear EoS
- Prospects for HIC (CBM & NICA) and Supernovae: color superconducting (quarkyonic) phases accessible!

48th Karpacz Winter School of Theoretical Physics

Cosmic Matter in Heavy-Ion Collision Laboratories

Lądek Zdrój, Poland, February 4-11, 2012

Lecturers

P. Haensel (Warsaw): Dense matter and compact stars J.-P. Blaizot (Saclay): Matter under extreme conditions H. Satz (Bielefeld): Analysis of matter in QCD W. Florkowski (Cracow): Ultrarelativistic heavy-ion collisions M. Gaździcki (Frankfurt/Kielce): Energy scan programs in HIC G. Martinez-Pinedo (Darmstadt): Supernovae and the origin of heavy elements

Invitations:

Contact

karp48@ift.uni.wroc.pl

www.ift.uni.wroc.pl/~karp48

Karpacz Winter School on Theoretical Physics "Cosmic Matter in Heavy-Ion Collision Laboratories" Lądek Zdròj, Poland, February 4-11, 2012 http://www.ift.uni.wroc.pl/~karp48

International Conference "CompStar: the physics and astrophysics of compact stars" Tahiti, June 4-8, 2012 http://compstar-esf.org

Helmholtz International Summer School "Dense Matter in HIC & Astrophysics" Dubna, Russia, 2012 http://theor.jinr.ru/meetings

CompStar School & Workshop "EoS in Compact Star Astrophysics & HIC" Zadar, Croatia, September 2012 http://compstar-esf.org

CompStar: the physics and astrophysics of compact stars

Tahiti, June 4-8, 2012

VENUS TAHITI

Advisory Board (preliminary)

Gergely G. Barnaföldi (Budapest) Gordon Baym (Urbana-Champaign)

David G. Blair (Perth)

David Blaschke (Wrocław) Hovik Grigorian (Yerevan)

Paweł Haensel (Warsaw)

D. Ian Jones (Southampton) Dubravko Klabučar (Zagreb)

Jérôme Margueron (Orsay) Andrew Melatos (Melbourne) Jie Meng (Beijing) Dong-Pil Min (Seoul) Ken'ichi Nomoto (Tokyo)

Takeshi Kodama (Rio de Janeiro) Evgenii Kolomeitsev (Banská Bystrica) Michael Kramer (Manchester)

Wick Haxton (Berkeley) Jorge E. Horvath (São Paulo)

Yuxin Liu (Beijing)

Akira Ohnishi (Kvoto)

José Pons (Alicante)

Sanjay Reddy (Seattle)

Hiroyuki Sagawa (Aizu)

Luigi Stella (Rome)

Renxin Xu (Beijing)

Luciano Rezzolla (Potsdam)

Robert Rutledge (Montreal)

Bernd-Jochen Schaefer (Graz)

Friedrich-Karl Thielemann (Basel)

Anthony Thomas (Adelaide) Hiroshi Toki (Osaka) Joachim Trümper (Garching) Michiel van der Klis (Amsterdam) Stanford E. Woosley (Santa Cruz)

Stuart L. Shapiro (Urbana-Champaign)

Pierre Pizzochero (Milan)

Constanca Providência (Coimbra)

2012

astrochemistry neutrino physics superdense matter supernova explosions physics of compact stars astrophysics of compact stars gravitational waves from compact stars

Local organizing committee Jean-Pierre Barriot David Blaschke (chair) Tea Frogier Eric Gourgoulhon Jérôme Margueron (chair) Pierre Mêry Tiare Penilla y Perella Pierre Pizzochero (chair) Luciano Rezzolla (chair) Daniel Zablocki

http://compstar-esf.orf/tahiti tahiti@compstar-esf.org

Invitations:

Karpacz Winter School on Theoretical Physics "Cosmic Matter in Heavy-Ion Collision Laboratories" Lądek Zdròj, Poland, February 4-11, 2012 http://www.ift.uni.wroc.pl/~karp48

International Conference

"CompStar:

the physics and astrophysics of compact stars"

Tahiti, June 4-8, 2012

http://compstar-esf.org

Helmholtz International Summer School

"Dense Matter in HIC & Astrophysics"

Dubna, Russia, 2012

http://theor.jinr.ru/meetings

CompStar School & Workshop

"EoS in Compact Star Astrophysics & HIC"

Zadar, Croatia, September 2012

http://compstar-esf.org

It's fun to investigate hot & dense states of matter !!

