High Energy Density Physics with Intense Heavy Ion Beams

Dieter H.H. Hoffmann and HEDgeHOB collaborators*

Radiation- and Nuclear Physics Technical University Darmstadt

*see details at the end

Moscow November 2011

Ion Beam Facilities for HEDP

IMP, Lanzhou

HIFS-VNL, Berkeley

Heating matter with Heavy Ion beams

Phase Diagram of Matter

Temperature (log T)

Physics of Generating High Energy Density in Matter with Ion Beams

$P_{\rho} = \frac{E_{\rho}}{\tau_b} = 1.602 \cdot 10^{-19} \cdot \frac{\frac{dE}{dx} \cdot \frac{N}{\tau_b}}{\pi r^2} \quad \left[\frac{J}{g \cdot s}\right]$

Eρ: Specific Deposition Energy [J/g] τ_b: Beam bunch length [s]
Pρ: Specific Deposition Power [W/g]

HEDgeHOB collaboration scheme: HIHEX and LAPLAS

HIHEX

Heavy Ion Heating and Expansion

Numerous high-entropy HED states:

EOS and transport properties of e.g., non-ideal plasmas, WDM and critical point regions for various materials

- uniform quasiisochoric heating of a large-volume dense target
- isentropic
 expansion in 1D
 plane or
 cylindrical
 geometry

Imaging Interferometer

B. Ionita et al.

Imaging Interferometer

Non Contact Measurement of Electrical Conductivity of Ion Beam heated Target

Loss Processes

Collimator design

Cryo Catcher

L. Bozyk, Spiller et al.

PRIOR – Proton Radiography at FAIR

Challenging requirements for density measurements in dynamic HEDP experiments:

- up to ~20 g/cm² (Fe, Pb, Au, etc.)
- ≤10 µm spatial resolution
- 10 ns time resolution (multi-frame)
- sub-percent density resolution

GeV protons:

- large penetrating depth (high ρx)
- good detection efficiency (S/N)
- imaging, aberrations correction by magnetshigh spatial resolution (microscopy)
- high density resolution and dynamic rangemultiframe capability for fast dynamic events

At FAIR: a dedicated beam line from SIS-18 for radiography 4.5 GeV, 5·10¹² protons

Fielding at GSI – a minor reconstruction of the HHT cave

• a compact system but long drift is needed for the microscope

Permanent Magnetic Quadrupoles (PMQ) – design

High Gradient Split-Pole Quadrupole

z (mm)

- Extremely High-Level Gradient Maximal Demagnetization Factor
- Flexible Choice of the REPM Coercivity on Magnetization
- Minimal Demagnetization in Median Planes (in Critical Spaces)
- Gradient Fixed

PMQ parameter	Value
Inner aperture, 2·R _i	15 mm
Outer dimensions, 2·Ro x L	79 x 100 mm
Internal ring magnetization	1.16 T
External ring magnetization	1.19 T
Pole tip field	1.7 T

Beam Trajectories and Set-up

Cryo Targets for Beam Plasma Interaction Experiments

Laser- Plasma Target for Energy Loss Experiments

Free Standing Solid Hydrogen Target

Target Thickness as Function of Time Measured by Electron Scattering

electron beam: 14 kV,[∿]5 µA, 2mm in diameter

Collaborating Institues

- GSI Helmholtzzentrum für Schwerionenforschung
- ITEP
- TU-Darmstadt
- CERN
- IPCP-Chernogolovka
- VNIIEF, Sarov, Russia
- Joint Institute of High Temperature, Moscow, Russia
- Kurchatov Research Center, Moscow, Russia
- Lebedev Physical Institute, Moscow, Russia
- Lawrence Livermore National Laboratory, US
- Institute of Modern Physics, Lanzhou, China
- UCLM, Ciudad Real, Spain

Collaborators

V. Kim, A. Matveichev, A. Ostrik, A. Shutov, I.V. Lomonosov, A.R. Piriz, JJ.Lopez Cela, R. Schmidt, C. Deutsch, V. Sultanov, H. Weick, M. Brugger
A. Hug, D. Varentsov, V. Turtikov, A. Fertman, M.Kulish, J. Menzel, O. Rosmej,
V. Mintsev, D. Nikolaev, N. Shilkin, V. Ternovoi, S.Udrea, A.A. Golubev
A.Blazevic, Y. Zhao, N. Zhidkov, A. Kunin.
M. Roth, G. Schaumann, D. Schuhmacher, Th. Hessling, L. Bozyk,
P. Spiller, F. Becker, P. Forck, C.V. Meister, A. Frank, K.Weyrich, M. Imran,
El Moussati, J.Ling, A.Pyalling, V.I. Turtikov