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Classical and Wave Packet MD
The method of classical molecular dynamics (MD) is widely used to 
study equilibrium and nonequilibrium nonideal plasmas [1,2]. At the 
same time the applicability of MD is restricted to non-degenerate 
and fully ionized plasmas. The main problems of the classical MD
approach are as follows:

choice of electron-ion interaction pseudopotential;
dependence of the pseudopotentials on temperature which 

restricts to the systems close to equilibrium;
presence of the bound states of electrons and ions with 

incorrect binding energy;
missing of the antisymmetrization effects except some 

corrections to the pseudo-potentials which reproduce the Pauli 
blocking.
One can improve the method of MD without loosing its performance
benefits by considering electrons as wave packets (WP) [3,4]. 
The exchange interaction between electrons in the Hartree-Fock
limit can be taken into accounts using antisymmetrized wave 
packets [5]. This method was named as Wave Packet Molecular 
Dynamics (WPMD). However, it causes new problems [6]:

spreading of wave packet for a weakly bound electron;
poor accuracy for a bound state of electron and ion when 

using simple Gaussian wavepackets.
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Dynamical variables (10 real numbers per wavepacket): 
(r, p) classical-like coordinate and momentum
s width of the packet ( > 0)
ps “momentum” of the width
c complex coefficient

Split WPMD Technique
We propose expansion of the wave function for each electron 
in the bases of multiple Gaussians. Advantages:

accuracy for bound states is greatly improved;
quantum effects related to the wave function splitting are 

reproduced (tunnel ionization);
simultaneous description of bound electrons by WPMD 

and free electrons by the classical MD becomes possible.

Hamiltonian: electron kinetic energy electron-ion Coulomb interaction

electron-electron Coulomb repulsion

external field potential

The total energy for both Hartree and UHF cases in the Split WPMD model: Symmetry effects:
kexch = 0 Hatree approximation
kexch = 1 Unrestricted Hartree-Fock with 

ykm are elements of the inverse 
overlap matrix Y = O-1:
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Split WPMD:

k-th electron wavefunction
normalizing factor for k

Gaussian wavepacket

complex coefficient

Ground state energies for Hydrogen and Helium
depending on the number of wavepackets per 
electron Nwp.
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Test Problem: Ionization of a Hydrogen Atom in a Short Laser Pulse

(a) – (c) Evolution of the main parameters of five WPs in a strong laser 
pulse; (d) Instant ionization probability w (left axis) and the number of 
bound WPs Nb (right axis) depending on time
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Ionization probability as function of pulse length T for two different 
intensities E0: QM – quantum mechanical calculations [7], CTMC –
Classical Trajectory Monte Carlo, WPMD – present results for five and 
three WPs per electron
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Definition of the ionization rate:
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