In this talk I discuss elastic properties of Coulomb crystal in static approximation (i.e. neglecting ion motion). I start from discussion of the elasticity tensor of the perfect crystal and demonstrate that it has additional symmetry, which do not depend on the actual crystalline structure and composition. As a particular result of this symmetry, the effective (Voigt averaged) shear modulus of the polycrystalline material shown to be equal to $-2/15$ of the Coulomb (Madelung) energy density of non-deformed state. This result is applicable even in case of disordered Coulomb crystals. Usage of the linear mixing rule combined with the ion sphere model allows to suggest universal upper limit for the effective shear modulus of polycrystalline or disordered Coulomb crystal, which can be written as $\sum_i 0.12n_i Z_i^{5/3}e^2/a_e$. Here summation is taken over ion species, n_i and Z_i are number density and charge of ions of type i, respectively. Finally $a_e = (4\pi n_e/3)^{-1/3}$ is electron sphere radius. Quasineutrality condition $n_e = \sum Z_i n_i$ is assumed.