At compression and temperatures above critical, metal vapor plasma begins to exhibit a number of metallic properties. At first, it is the appearance of the electron jellium — the origin of the conduction band. The jellium arises from the overlap of electron density tails of bound electrons lying outside the Wigner–Seitz cell. Second, the emergence of jellium leads to the appearance of cohesion — quantum, collective binding energy of atoms. These “metallic” properties are included in the “3+” model of plasma developed by the authors, which can be considered as a model of gaseous metal, the idea was first introduced by A. A. Likalter [1]. The main properties of gaseous metal are considered. The temperature–density phase diagram shows the region of the plasma’s “gas-metallic” existence — the region where jellium electrons dominate thermally ionized electrons. The main features and properties of gaseous metal, for example, conductivity are discussed: the region of existence of gaseous metal near its binodal; conductivity behavior at supercritical isotherms — the presence of minimum and asymptotic. The physical meaning of the conductivity “asymptotic” with density increase is the conductivity of vapors along the vapor–liquid coexistence curve.