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Abstract

In the third Chapter of Fortov’s last book [1] in extension to a forego-
ing book [2] several new topics have been included, among them classical
plasmas including seawater. We consider seawater as a classical nonideal
plasma with nonideality parameters near to one. We give here a survey of
this new field and present applications to the individual activities and partial
pressures of seawater. First we consider the available exact results of statis-
tical physics for charged hard spheres. In difference to most previous studies
of charged spheres with equal diameters we use the more flexible model of
nonadditive diameters, where the independent contact distances of pairs are
the free parameters. For this model we develop fully analytical nonlinear
extensions of the standard Debye - Hiickel approximations of individual ac-
tivities and then a new extrapolation to the theory to partial pressures. The
osmotic pressures are related to the chemical potential of the solvent, the
freezing and boiling points etc. Special emphasis is put on predicting the
properties of seawater plasma. We calculate the individual activities and the
individual osmotic coefficients of a six - component “ideal seawater”” model
and compare with other available results.

1 Introduction

Seawater as the most abundant classical plasma on Earth and his role as a most
important factor for our climate is overwhelming. Counting on our planet the
number of free charges, we come to the conclusion that most free charges are to
be found in the oceans. Vladimir Fortov, who preferred in his life always a very
broad and global view on the problems of science, arrived at such insights in the
discussion on the SCCS - conference 2017 in Kiel. On the conference excursion
to Liibeck he pointed out to the present author that he planned a Russian version
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of the book and proposed to include not only additional material on plasmas at
high pressures and extreme conditions but also some considerations on reservoir
of seawater on earth as an important non - ideal plasma. Vladimir explained to this
author on a beer mat that the non - ideality parameter for a seawater electrolyte
with a Landau length of about ¢ ~ .7nm and a mean ionic distance of somehow
more than dg ~ 1nm is between I' ~ .1 and I" ~ 1, i.e. about the same order as the
nonideality parameter in a high -temperature, high - pressure Cs— plasma.

It may be more than a strange coincidence that the founder of the Rostock school
of statistical physics, the late Hans Falkenhagen (1895 - 1971), decided half a cen-
tury ago, a year before passing away, to give a summary on nonideality effects in
electrolytes [3, 4, 5]. These summaries were in part written together with this au-
thor and in part with Wolf - Dietrich Kraeft. They are a comprehensive treatment
of the nonideality effects in electrolytes including thermodynamic and transport
properties. Hans Falkenhagen understood the term nonideality as the deviations
from Planck’s theory of ideal solutions, which begin with the limiting laws by
Debye and Onsager and the subsequent hard sphere corrections.

In same recent papers [6, 7, 8] we provided already some more recent applica-
tions to the activity coefficients and other properties of seawater electrolytes which
complete the older material given in several books [1, 5, 9, 10].

We develop here in more detail the view that seawater is a classical nonideal
plasma and give results of very recent studies on individual activities [6, 7, 8].
Then we extend the methods to calculations of the partial pressures and the os-
motic coefficients of seawater. As well known, the thermodynamic properties
of the ocean play a deciding role for modeling the climate on earth [11, 12, 13,
14, 15]. We responded this way also to urgent requests of international insti-
tutions and to evident needs for extending and deepening the knowledge on the
physico-chemical properties of the components of seawater and other complex
natural and technological electrolytes [15]. In spite of the primary role of sea-
water electrolytes for our life and in particular for our climate, this medium is
not well represented in recent books and survey articles on electrolytes. In most
of those publications, including our own work, the subject seawater is not even
mentioned, despite of its dominant role for solving our urgent climate problems.
Vladimir Fortov understood very well that the reliability of recent predictions on
the temperature development in the next century depends crucially on our knowl-
edge about the thermodynamics and nonideality effects of seawater which is not
well studied.

Most of the methods used here are relatively simple and have been in principle
been developed already long ago, however, only rarely including applications to
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very complex electrolytes. We follow the convince of Fortov and other experts,
that more knowledge on individual activity and transport coefficients of complex
systems is important and of high relevance for climate research because of the in-
fluence of seawater on the energy exchange on the surface of our planet [13, 15].

Seawater is a rather complex electrolyte, containing as a rule more than 20 species
some of them only in tracer concentrations. In addition to univalent ions, such as
Na*,K*,CI~, several double - charged ions Mg>*, Ca®* and SO;~ are of im-
portance for seawater properties. Therefore, before proceeding to applications we
have to develop a new look at the analytical theory of electrolytic systems includ-
ing ions with higher charges, where the differences between the individual and the
mean activities are large [16, 17]. Since seawater is a mixture of ions with one or
two charges we devote special interest to the consequences of charge asymmetry
and of higher charging for the individual ionic properties.

According to Lewis, activities of species i are defined by chemical potentials [12]

i = 1+ kgT n(a;/ag). (1)

Here, ,ul.o is a specified reference chemical potential, kp is the Boltzmann constant,
T is the absolute temperature, a; is the activity of the ion 7, and ag is a constant that
renders unitless the argument of the logarithm. (Note that in the physico-chemical
literature this constant is often omitted but silently assumed to be 1mol /I). For the
definition of activity coefficients we have several possibilities depending in partic-
ular on the choice of units for the concentrations/mass relations. In our statistical
calculations we use the ion molarity (in moles of the ion per dm?) as the basic
primary quantity. For seawater we use also the chlorine molality (7, in moles of
chlorine per mass of pure water), rather than the traditional oceanographic mea-
sures “chlorinity” (CI, per mass of seawater) or the “absolute salinity” (S4 or S, the
mass of dissolved sea salt per mass of seawater). Those quantities express certain
mass ratios and are mutually related. For a standard ocean, the absolute salinity is
S4 = 35.16504. Note hat the statistical theory mainly uses concentrations instead
of mass relations.

The so-called rational activity coefficients, f;* and f;, correspond to the standard
theory of solutions by Max Planck and were developed in many works in different
forms [5]

-3
a; = Xx;f;, ap =1, a; = n;f;, ap=lem . 2

Here, x; = N;/ Y. N; are the mole fractions of the species i in the solute. The co-
efficients f; have a dimension of reciprocal densities. Alternatively, the so-called



practical (or molal) activity coefficients ¥; are defined using molalities. A standard
method for estimating rational individual activities is the so-called virial expan-
sion of the thermodynamic functions [3, 5, 10]. Methods for practical calculations
were developed by many authors [11, 16].

Beside the individual activities a;, also the partial osmotic coefficients related to
the partial osmotic pressures P,

gi=P/PH, 3)

play an important role for the ionic properties of electrolytes. As there are well-
known difficulties to measure individual ionic properties, arbitrary conventions
are often employed for quantities defined by the single-ion activity coefficients
and the pH scale [13].

In the statistical theory, we are able to determine single - ion activities only up to
uncertain linear terms in the electrical charges e;. These principally uncertain con-
tributions always cancel in the mean activities. Uncertainties in the experimental
estimation of individual activities are therefore related to the violation of electro-
neutrality of samples. Theoretically this effect is connected with contributions
which are linear in the charges e; [1, 2]. These contributions are in the statistical
theory principally uncertain, however they cancel out in the average and to not ap-
pear in the mean activities. We assume that this is also the reason for uncertainties
we observe in the experiments. Then the uncertainties in the estimation of individ-
ual activities are connected with the space charge of the samples. Corresponding
to these theoretical results, individual activities are not unique since terms linear
in the charges remain uncertain in experiments as well as in the theory. These pos-
sibly conditional terms cancel out in the average and do not influence the mean
activities.

With respect to seawater, sww thw works on the Gibbs function of seawater at
oceanic salinities up to 40g /kg [15, 14]. Pitzer equations are semi - empirical for-
mulas for individual ion properties including activity coefficients and pH of sea-
water [11]. We use here statistical methods following mostly the theoretical work
of the school of Falkenhagen on the dependence of thermodynamic and transport
data on individual ionic interactions, but so far without expensive applications to
complex electrolytes. The basic methods have been described already in [6, 7] and
are based on earlier work [3, 5, 16]. Our approach is consistent with all known
exact results of the Friedman - Falkenhagen cluster expansions and provide rea-
sonable results for mixtures including, 1 - 1- and 2-1- electrolytes and in particular
to standard seawater. In the case of seawater we will find, that the model of non -
additive radii provides a better description of the data [11] as the model of additive
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radii as used in most earlier work [16, 19]. For this reason we develop here the
model of nonadditive radii with given contact distances. A description of conduc-
tance data based on the same model is in progress. As we mentioned for standard
seawater very useful results have been obtained by Ulfsbo et al. [19] performing
extensive MC calculations for a hard sphere model of seawater in the form of an
electrolyte containing the major ions Na™,Mg*+,Ca®t,Cl~,S02~, and the minor
ions HCOy5 , CO%T The results for mean salt-activity coefficients were compared
with the Pitzer model, finding after fitting the radii in general good agreement over
the temperature range 0 to 25°C and salinity range 5g/kg to 40g/kg. In the present
paper we use analytical formulae and fit the contact distances R;; to available data
at 25°C.

We will explain here several statistical methods for the calculation of the par-
tial osmotic coefficients [3, 5, 10].
A standard method for estimating individual activities and osmotic coefficients is
the so-called virial expansion of the thermodynamic functions [3, 5, 9, 10]. Meth-
ods for practical calculations were developed by many authors [16, 11].
In the statistical theory, we are able to determine thermodynamic quantities as ac-
tivities only up to uncertain linear terms in the electrical charges, e;. These princi-
pally uncertain contributions always cancel in the mean properties. Uncertainties
in the experimental estimation of individual quantities are therefore related to the
violation of electro-neutrality of samples. Contributions which are linear in the
charges e; are in the statistical theory principally uncertain,

2 Interaction Potential Model and Methods of Sta-
tistical Thermodynamics

For the calculation of theoretical individual ionic activity coefficients we are using
simple analytical expressions such as generalized Debye-Hiickel-type approxima-
tions, virial expansions, and the analytical solutions for the mean spherical ap-
proximation for charged hard spheres (MSA). We start with the consideration of
an arbitrary neutral ionic solution and specify then to selected components which
are in particular relevant to seawater. Individual ionic activity coefficients will
be be calculated for models of hard charged spheres with additive or nonadditive
radii. In some earlier work [6, 7] we applied several methods based on statisti-
cal physics to calculate the individual activity coefficients for given models. In
particular we developed several theoretical approaches for the model of charged



hard spheres with non-additive contact distances R;;. Let us repeat the main re-
sults. We follow the general concepts of the Mc Millan - Mayer theory theory
of solutions [9] and start from approximations of the pair distribution, go then
by the virial formula to the pressure, the osmotic coefficient, the electrical and
the free energy. By Debye charging we obtain the Helmholtz free energy, and by
partial differentiation the individual activity coefficients. We study an electrolyte
with the electrolyte concentration ng, the ion densities n; = V;ng, the ion charges
e; = zje, and the ionic strength [ =ng Y, vizi2 /2 . and concentrate on calculations
of the excess properties [5, 10]. For the calculation of the excess thermodynamic
functions we define first the potentials of average force between the ions. We split
the interaction potential between the ions a and b, y,,,, of the average force into a
Coulombic and a short-range part

Vb = Var(r) + V1 (1) Vap(r) = zazpksT(£/7); £ = (* /4megekpT). (4)

where &:(7, p) is the relative dielectric constant of pure water and ¢ the Coulomb
length (also called Landau length or double Bjerrum length), being functions of
temperature and pressure. In the following we perform all calculations for the
temperature 7 = 298.15K (i.e. 25 degrees Celsius). and assume for the relative
dielectric constant the value €. = 78.36. Then we get for the Coulomb length
¢ ="715.4pm. By changing ¢ we may easily go to other conditions. For the short-
range part, Véb(r), different models are used [5, 10]. We consider here the model
of charged hard spheres with given minimal contact distances, which are not nec-
essarily additive:

VI (r)=oc if r<Ry, otherwise V! (r)=0. 5

Here R, are the contact distances, forming a set of the smallest ion distances,
one for each kind of ion pairs. This we consider as a kind of minimal model for
the estimation of individual properties of ions in many-component complex elec-
trolytic systems. The charges and contact distances are the basic parameter set of
our system, relevant is that we will not assume additivity of the radii.

According to cluster theory [3, 5, 9, 10] we get in the lowest orders in the con-
centration up to O(n?), the following exact results (for the given potential model)
which is correct up to quadratic order in the concentration [3, 5, 9, 10]

5 3
Inf; = —Z?EKZCj(l—KRij—FZ(KRU) +0(x ClZ”J [ZIZ] ]
J

[C+1n(3%R;))] Zn]R3 44 Zn,R3+0 ). (6



We introduced a specific factor §; characterizing the individual properties of the
components in unsymmetrical electrolytes. The factor ; has the value 1/4 for 1 -
1 electrolytes For unsymmetrical electrolytes the factors are different for the two
components. In the case of 1 - 2 electrolytes, the single-charged ions correspond to
{1 = 1/18 and the double-charged ions correspond to {, =8/18 =4/9. For 1 - 3
electrolytes, the factors are {; = 1/56; , =27/56. The sum over the components
is always equal to 1/2 for any mixture. These exact results of cluster theory, first
derived by Friedman, set a strict standard for any new theory. Here we derive
formulae which are fully consistent with cluster theory results. By differentiation
of the free energy, we get for the activities first an expansion wtih respect to the
parameter 1);; Then by using the technique of partial fraction representations we
get the closed approximation

1
Inf; =In(e) —z7klY. §;| ——— + G1(&jMij &) + ... 7
nfr=n(a) — et LG [+ GilGem 0+ ™

4r
+?anR?j+...; T]ijZK‘Rl‘j. (8)
J

where the degree of ionization of species i is approximated by
o — 1
C KLY Gi(8R/24)Ga (i)

At least up to the leading order O(n;) this approximation for the activities is in
agreement with the exact expression derived from the cluster expansions for the
free energy [3, 5, 9, 7]. It contains, however, in addition contributions of higher
order in the parameter 1, which strongly improve the convergence of the series.
The first term leads us back to Debye’s limiting law and to the DHE formula, the
next order provides the extended limiting law of Poirier and Friedman and terms
beyond.

The Euler functions E,(x) and e,(x) are well studied and tabulated [7, 6]. In the
explicit expressions for the functions G1,G, we use for numerical convenience
mostly the modified Euler functions e,(x). For numerical calculations we have
useful approximations

)

1
e1(x) = xexp(x)E; (x) ~ axln (1 + —), enr1=1/(14n/x) n=1,2,..
ax
(10)
More precise approximations are given in [7, 6]. In the approximation for ej(x),
the value a = 1 provides an upper bound and a = 0.5 a lower bound. For an
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approximation in the range 0 < x < 2 we use the value a >~ 0.6147 which has been
obtained by fitting to the data in tables around x = 1 [7]. The approximation for
e2(x),e3(x),... provides an upper bound. Numerical integrations of the integral
representation of the G-function for several values 1 < 3,|& < 10| have shown
that these simplest approximations are reasonable for the cases we consider. Using
these relations we find:

GI(&.1.) = g sler(3m) — EGmexa(-3m)], an
B o émfZ
G = X gt pymen2mm) (12)

Helpful for the convergence is, that the higher orders disappear more quickly with
1, because the effective expansion parameter appears to be e?/(1 +n).. The
nonelectric terms are considered here only in linear approximation, at high densi-
ties we may use Carnahan-Starling-type approximations [10]. These corrections,
however, may be essential only in the range of concentrations around 1mol /kg
and beyond. We note that the terms which are described by the functions G, G,
tend to increase the difference between the activities of anions and cations. As a
rule these terms increase up to a few tens of mol / dm? and then they decrease.

For the contribution of the 1onic species i to the osmotic pressure we get by intro-
ducing the nonlinear Debye - Hiickel distribution function into the virial formula

| 27 i
p=pid —yel =7, R3. [#} 13

P= AT SHI;HJ i XP (1+KR;j) (13
Here the electrical energy density can be also expressed by Euler functions [6, ?,
?]. We define the weakly coupling, moderately coupling and strongly coupling
parts of the osmotic pressure by

BP,/(nikpT) = gi = 1+g/“ +gi" +gi°. (14)

Note that the strongly coupled contribution is negative and increases strongly with
2. As aresult the pressure my became negative what is here un - physical. Quite
formally we may, in order to avoid negative values of g;, transform the expression
by replacing 1 + gi° which can get negative values by the strictly positive expres-
sion 1/(1 — g¥¢). This way without changing the accuracy in the linear order in
the density O(n) we arrive at the mathematically more beautiful expression

: 1
PP/ (niksT) = g1 = 7 +&i" +ai" (15)
l



This expression is however, not only a mathematically more beautiful, but is has
also a deeper quasi - chemical meaning as we will show in a next section.
Similar to these approximations for the pressure we get also corresponding ex-
pressions for for the activities. We start as in our previous work from the same
approximations of the pair distribution and obtain first the free energy; then by dif-
ferentiation the individual activity coefficients [7, 6]. We checked that the results
are consistent with the exact results obtained by the theory of cluster expansions
for the activity coefficients at small concentrations (densities) [10, 3, ?]. For an el-
egant representation of the thermodynamic functions we introduced the fractions
k; which were used already by Onsager in transport theory. These fractions are
specific for the components of each electrolyte. We used earlier instead of k; the
letter {; = k; /2, here we prefer Onsager’s notation changing, however, Onsager’s
letter g; to our notation k;. For 1-1 electrolytes we get the value 1/2 for both
components, for 2-1 electrolytes the factors are different. For ions with z; = 2
we get k; = 2/3 and the ion component with z; = 1 correspond to k; = 1/3. Note
that these differences are essential for the splitting between the individual osmotic
coefficients and activities.

Our result for the osmotic coefficients in DHX approximation reads

sc 1 3 - m em—2<(m_l)n) 1
R WL (G0t + mp T =~ i)
(16)
where the Euler function is represented as E,(x) = xexp(x)e,(x). In a different
form we may write the partial osmotic coefficients and the activities as

1

1 -
8i=1—621'2K£'ijG(KRij>§ij), Inff' = >
J

gl Y kiG(KRij,&ij), (17)
J

The G - functions refer to the activities and the functions with a tilde G refer to

the pressure and, by the way, also to internal energy. The G - functions are sums

of terms representing the different orders in él’; However Gy # Gy:

G(x) = Go(x) +G1(x) + Ga(x);  G(x) = Go(x) + G +Ga(x) (18)

In simplest approximation we use here for the zeroth order Gy the Debye - Hiickel
- approximation; more advanced is the Mean Spherical Approximation (MSA)
and the related Henderson - Smith approximation (HSA) [6]. In DH - approxima-
tion we find
1 ~ 1 X
G = — .
1+x  2(1+x)2

(19)



The more advanced nonlinear Debye - Hiickel - approximations (DHX) take into
account the first- and second-order terms G (x),G2(x), G (x),G2(x) [6]. For a
convenient representation we introduce the auxiliary functions

X

e1(x) =xexp(x)-Ej(x); ex(x)=x(1—ei(x)); en(lx)= (1 —ep—1(x)).(20)

n—1

Using these definitions and approximations we we find for the strong coupling
part of the osmotic coefficients

=2 R Y (é]él(l_ggg,)m) (1+ ?n) (21)
J m=4 :

= —2m Y iR} Kot + - Roal G/ (1+ 1)
J

where we introduced the Kirkwood functions [5]

Koalx) = i m Koa(x) = ,,;4 (m—3;C(m— mo @

which is well known in electrolyte theory [5]. Cutting the series in £ behind the
third term (sixth order in ) we find the different representation

G1(6:1.0) = 1 meler (n) — L Gn)exp(—3n)]. 23

1[(5/(1+n)) +(§/(1+n))5 (§/(1+m))°
E21 24(1+4n) ' 96(2+5n) ' 480(3+6m)
(

G1(6:m) = g ssblen2m) ~ 3nCexp(—3n)).29

. _n(+n/3)rE/+n)t  (E/(+n)  (E/(1+n))°
Ga(6m) = E2 [ 24(1+3n) | 1202+ 4n) | 72033 +51)

We may convince ourselves that at zero density 7 = 0 the convergence is getting
unsatisfactory for |§| > 6, however for larger 1 say 11 = 1 the convergence is
improved and we may extend the calculations to |£| ~ 10, covering solutions of
interest for seawater. Further we note that both functions G,(&,7n) and G2 (€,1)
are positive for positive arguments and they agree for small & and small 1. For
larger values of the arguments G»(&, 1) is larger.

Gy(&,m) = +..] (24)

+ ] (26)
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3 Association effects in semi- chemical description

The semi - chemical picture comes in, when the Pade approximation (1 + g¥“) —
1/(1— gi) is interpreted as introducing the degree of ionization of the ions i i.e.
the relation between free ions and the total number of ions i by

1 1

o = = ~ ' @D
i l_gls'c 1+%Z%K‘€-ijjG2(KRij7§ij)

In principle we could stop here and proceed to calculations. The very fact, how-
ever, that in many electrolytes including also seawater the presence of multiple
-charged ions leads to association effects, calls for some deeper discussion. Note
that we have in principle the same situation in plasmas, where the presence of
multiple - charged ions also leads to bound state effects, i.e. formation of atoms
[2, ?]. The theory of bound states in systems with Coulombic interactions has a
long history which begins with Bjerrums work, which cannot be discussed here
in detail. How can take into account at least weak association relevant for seawa-
ter? As well- known since Onsagers work, there is some freedom in the choice
of methods and in the definition of the bound states. We follow here the line of
semi - chemical methods. In the case of activity - based methods we have made
profit from methods developed by Justice [?, 20]. Here we will use a semi - chem-
ical method based on the pressure which also avoids explicit definitions of bound
states. This method which is quite effective, can be giver a stronger foundation
by methods based on the grand - canonical ensemble [2]. Here we prefer quite
simple arguments based on chemical ideas. In order to explain the key ideas we
start from an naive chemical description of a binary electrolyte consisting of the
densities of n free anions, n_ free cations and ny bound pairs, being in chemical
equilibrium described by the mass action law (n - total number of free plus bound
cations)

0 =nK(T); n=ny+ny. (28)

nyn_

The pressure is then given by
Bp=n,+n_+no+Bp~ (29)

We introduce the definition of the degree of ionization & = ny /n =n_ /n and the
degree of association 6 = 1 — & and the mass action law

1_
§=1—a=anks(T), or T‘x — anks(T). (30)
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we find
Bp=ni(1+a)n+Pp™ =2n—3n+Pp*. (31)

Note that in a statistical formulation the mas action constant of pair formation
is related to the bound state part of the second virial coefficient in the fugacity
expansion K»(T') = 2b'__. Near to full ionization ¢ ~ 1 a zeroth approximation
gives a = 1 —nK(T). This approximation , however, is not appropriate since o’
is even not positive definite. The result is much better, when we start from the
second form of relation (30) which gives in the first iteration and in an improved
version positive definite expressions [2, ?]

1+a 1+3nK>(T) /2

all) = ay = nky(T) =2nb"_  (32)
These relations suggest, to select a big negative term which follows the ideal pres-
sure and identify it with he mass action constant. In our case of osmotic pressure
we propose to identify the term proportional to G,, which is strictly negative as
the contribution of association association. In a next step we identify this with the
degree of association 6 = 1 — a which is proportional to the mass action constant,
This way we arrive in first approximation at the degree of ionization of species i

1 1

"1+ 12k kG (xR, &)

Without going into the details, we may be found in the cited books for the case
of gas plasmas [1, 2, ?] we will show now that this procedure may be extended
also to the association of more than 2 charges. Applications to Hydrogen, Helium
and Lithium plasmas have given more recently in [21]. Here we consider now
first the classical association of two anions and one double charged cation. We
think here about MgCl,, where the cation Mg>* binds the two ions C/_. This case
is structurally equivalent to the binding of two electrons by a double - charged
He? - ion. This way we may follow the procedure developed in plasma physics
[2]. Defining the the two association constants a, for pairing of two charges and
as for a triple formation + — —. Translating the method described above for pair
formation to triple formation we get

)
p=p [§ + §Z(az,a3)] + P, (34)
1+ay/4+as3/2)
(a2,a3) G LG MGt = S T 3ay)2) 53)
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Here the meaning of the sum over states Z(a»,a3) is the degree of full ionization,
i.e. the number of free double - charged ions to the total number of those ions
(counting free and bound ions). We see, that for the limit case Z = 0O the relative
osmotic pressure goes to 1/3 in comparison to the case of full ionization Z = 1.
This way we may treat the case of weak association (nearly full ionization) in
MgCl, - solutions, provided we are able to identify the association constant for
electrostatic triple association. We explained here the procedure for the example
MgCl,. By exchanging + and — we are able to treat also triple association of salts
like NaySO,4. An earlier semi - chemical picture for the activities [?] which leads
to

o ! (36)

CT I+ ZKLY; G (i, &y G)

The comparison shows, that the expressions derived from the osmotic pressure
approach and those from the activity approach agree at small densities as far as K
is small. However the higher orders in x (i.e. higher orders in density) may differ.
In general, the differences stay, however, within the limits of the accuracy of the
semi - chemical approach.
We cannot go here into a detailed theoretical foundation of the semi - chemical
picture and mention only that it is connected with statistical ensemble descriptions
between canonical and grand - canonical ensemble [1, 2]. The key idea of the
approach to seawater is discussed already in [6]. In a forthcoming Research Gate
preprint we will apply the osmotic pressure approach to conductivities. Note that
the problem to calculate all other excess potentials has also been solved in some
approximation. The excess chemical potential of the solute u* may be calculated
using the Gibbs-Duhem relation

Y, Nduft=o. (37)
i=0,1,...s

In our foregoing work we studied in detail the methods for calculating the excess
chemical potentials of the ions. In order to find the excess chemical potential of
the solvent we consider the equilibrium between an electrolyte and a pure sol-
vent separated by a semi-permeable membrane. The equilibrium condition for the
solvent molecules is [5]

to(p,T) = o (p+P.p,S) (38)

The difference of pressures is the osmotic pressure. For small osmotic pressure,
and neglecting the (small) compressibility of the solvent and assuming a linear
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relation between chemical potential and osmotic pressure, we may expand and we
get finally an expression for the excess chemical potential of the solvent in terms
of the excess osmotic pressure

uy'(p.T,8) = —voP™(p,T.5) (39)

where vy is the partial molar volume of the solvent. We may introduce here the
excess osmotic pressure given above in order to find the complete excess Gibbs
function [5].

In systems with double - charged ions we may reach Bjerrum parameters in the
range of 6 -9 and even larger, in pairings with triple charged ions we may also
reach this range. The Bjerrum parameter is the electrostatic energy between two
ions at their contact distance, divided by the thermal energy, k7. As known from
tabulated numerical values [3, 5], the virial functions change sign at & ~ 4 and
higher order effects in & start to grow in a very fast way beyond & = +5. Therefore
we need then a different treatment higher order terms, which otherwise would
create very large negative contributions to the activities. The simplest way to
replace the pure physical description by a quasi - physical view is the method
of Justice and Justice [20]. This approach is based on a generalization of the
known exact compressibility equation to ionic solutions derived by Rasaiah and
Friedman. We have shown, following these ideas of Justice and Justice [20], how
the higher order terms G,(n,&) and the orders beyond may be treated effectively
[7]. In this framework the diverging negative term of highest order proportional
to G, 1s replaced by a positive logarithmic expression. Values for the fitted radii
of the halide ions obtained by a simultaneous fit of data to MSA are given in in
[16]. As we will show, the model of additive charges which well describes all
halides but seems to be unable to describe complex mixtures with a high number
of pair interactions like seawater. We conclude this section with some remarks
about multiple charged ions giving rise to Bjerrum - pairing. Higher charged ions
are of much interest for applications. There are several possibilities to take ion
association into account [3, 5, 10, 20, 22]. We prefer here for several reasons a
physical or say better a semi - chemical description. At first, this has the advantage
for the treatment of highly complex systems like seawater, to be more simple. At
second, and this is a serious point, we do not need to introduce and to define
all the possible molecular complexes what leads for seawater with many possible
pairings to an explosion of possibilities. Instead we need here only an account
of the cluster integrals describing two - particle and three - particle interactions.
The disadvantage is, that this physical or semi - chemical approach works only at
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small concentrations so far as the frequency of pair - and triple - formation is still
low. This is an open problem to be treated.

4 Problems of fitting data and applications

We will show that for seawater the physical approach works for the region of lower
salinities up to about S ~ 35, what means moderate salt concentrations, i.e. from
small to standard salinities. The main reason is the improved convergence of clus-
ter series as discussed before due to additional screening. In many imbeddings
with additional screening like in seawater th 1) - parameter is of the order of one
1.e. the effective interaction strength has a value by a facto two lower than in in a
solution in pure water. This means that e.g. MgSO4 which has in pure water an
interaction strength of about &, ~ 6 — 8 comes down to the region oty ~ 3 —4.
Exactly here are the reasons, why in seawater and in related solutions our simple
analytical tools still work. Of course, at really high concentrations, a fully chem-
ical approach may be more effective, in spite of the disadvantages and complica-
tions mentioned above. An alternative tool are of course MD or MD simulations
[19]. In order to avoid any possible instabilities we follow a more simple approach
which goes back to the work of Justice and Justice in the 70ths [20, 7] which is
justified by the statistical compressibility approach. For introduction of this ap-
proach we consider electrolytes with ions carrying more than one charge as e.g.
sulphuric acid containing the ions SOi_ and the halides of Mg?" and Ca®*. We
we will concentrate on the treatment of electrolytes relevant for seawater which
contain several double - charged ions as Mg2+, SO?[, and Ca®** ions. Table 1
gives a few of the contact distances which we will use for calculations [6]. Note
that we have after a new fitting some contact distances modified in comparison to
the table given in [6]. We restrict here the study to the range, where association is
still weak, say, less than 1/3 of the ions are bound by electrostatic effects. Then
in some cases the state may be described by more simple physical (or pseudo -
chemical) methods as e.g. developed in the work of Justice [20]. This way we are
able avoid the solution of highly nonlinear mass action laws for electrolytes which
show at higher concentrations numerically unstable solutions or phase transitions
which were not observed in seawater. The comparison with the results for the
activities shows, the this is a lowest approximation, in the next order logarithmic
corrections are to be expected. Anyhow together with our equations for the activ-
ities we have now in hand a set of formulae which should be able to describe a
large class of thermodynamic and transport data. Our guiding rule for fitting the
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theory to data for real systems is to fit data sets simultaneously with a minimum of
theoretical assumptions. The unknown parameters are in our case the contact dis-
tances R;; i. e. we have to fit for solutions with 2,3,4, or 5 ion altogether 3,6,10,
or 15 parameters, respectively. These numbers are strongly increasing with the
number of ions. For the standard seawater model with 6 ions we need already
an estimate of 21 unknown parameters which we have to fit simultaneously to
all available experimental data. This hard task requires to include all available
knowledge about the contact distances including information from other sources,
such as ion mobilities and Born relations for the radii. Further we may include
also some information about microscopic parameters from recent Monte-Carlo
(MC) and Molecular-Dynamics (MD) computer simulations [19]. A microscopic
method which provided important information about the effective radii are MD
simulations which provide most direct information about the contact distances. In
most complex systems like seawater the number of unknown parameters is at the
limit of our possibilities. It has been shown in other work that the MC approach,
which treats the ions as charged hard spheres with additive radii, i.e. a smaller
number of parameters, a good description of real data is achieved [19]. It has
been demonstrated that the model with additive radii is able of accommodating
important effects by adjustment of effective ionic radii differing from the known
crystallographic radii. Among the reasons explaining these deviations is hydration
which increases the effective ionic radii. Another reason are strong cation-anion
interactions where the effective anion radius (sulphate and carbonate in this case)
is smaller than the crystallographic radius. The point we want to make here is, that
for the description of complex systems like seawater the model of hard charged
ions with given contact distances is much better suited for fitting data as the model
of hard charged spheres with given additive radii. The reason is the larger number
of parameters and therefore a larger flexibility. For example we have in the model
of additive radii just 6 radii as free parameters for fitting seawater data, but al-
ready 21 free contact distances to fit for the ion model with contact distances. The
possibility to adapt the 21 contact data to seawater data has been demonstrated in
[6, 7] and the result is in part reflected in the data given in Tab. 1. However, in
order to increase the precision of fitting parameters we should increase the data
collection. The open problem is therefore, to include the big data collections about
conductivity in our consideration. The idea how to adapt to data goes back to the
methodological tools developed by the school of Hans Falkenhagen in Rostock,
shortly after his passing away in 1971. In particular, at the 1977 Faraday discus-
sion the method had been presented as a tool for finding individual properties such
as individual activities and mobilities, as outlined the works [16]. Briefly, the idea
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is summarized in the following recipe:

1. Collect data containing information on individual properties, say, activity coef-
ficients and conductivities, for a group of “overlapping” data sets. What we mean
with overlapping data sets are chains or loops of dissolved ionic pairs like Br — K,
K —Cl, Cl —Na, Na — Br. In spite, the fact that data on one electrolyte are not
sufficient to isolate the information on individual ions, the data for larger groups
containing many chains and, if possible, even closed loops, may provide sufficient
information to estimate the individual properties.

2. Derive closed statistical equations for the observed properties based on certain
models for the interaction potentials. In simplest case, assume hard-sphere mod-
els with individual contact distances for ion pairs as shown above and proceed to
more advanced models like step potentials for the average ion-ion interactions.

3. Fit the theory to the data for groups of ions containing chains and loops and
complete the given information on contact distances of ions with data from mi-
croscopic simulations.

For first applications we study the chlorides, which play the most relevant role
for our life, and also for the properties of seawater. The IUPAC recommenda-
tions from 2002 propose to use the Bates - Guggenheim report [12] as a kind of
standard for C/™ ions. Bates and Guggenheim recommended by the name of the
”Commission in Electrochemical Data” [12] to use for normalization a standard
for chlorine ions. We show in Fig. 1 a comparison with the Bates formula for the
C!l™ ion. Further we show some recently measured points representing data for the
activities of CI~ (black) and H ions (red) measured by Sakaida and Kakiuchi [?]
We note that the estimate of Bates works only for ¢ < 0.1mol /dm?, then devia-
tions from the DHX theory appear. In comparing the Bates - Guggenheim formula
with the approximations DHE and DHX, we see that the differences, are small for
¢ < 0.2mol /dm? but cannot be neglected for ¢ > 0.2mol /dm>. In addition to the
charges, the basic parameters of the simple statistical theory presented above on
the basis of the cluster expansions for the model of hard charged spheres are the
contact distances of the centers of the charged spheres. A significant improvement
of the DHE is achieved by the nonlinear corrections given in DHX and the mean
spherical approximation MSA. As we have seen the standard version of the MSA
is valid only for the case of additive radii.

We may proceed to electrolytes including ions with higher charges using the Jus-
tice method as explained above. Summarizing: The main difference to our earlier
methods developed for 1-1 electrolytes is:

(1) The very specific role played by the contribution stemming from G| expressing
asymmetries between the ions.

17



0 ‘ 0
-0.2 .
-0.1 | . —
>
;._‘:': - -04 T
= a
S =
g o2y : x 06 ]
= 3 2
- =)
e ) = 08 f |
= 03¢t E 5
O —
8 g -1 F i
= Cal
* g
-0.4 | . -12 .
-1.4 | .
0.5 _ : ‘
0 0.1 02 03 04 0.5 0 005 01 015 02
srt(c) sqrt(c)

Figure 1: Left panel: The individual and the mean activity coefficients for HCI
according to the extended Debye-Hiickel approximation. Deviations of the in-
dividual activity coefficients from the mean depend mainly on anion-anion and
cation-cation interactions. The lowest (at small ¢) curve (violet) demonstrates the
Bates-Guggenheim recommendation for the C/™ ion. The other curves were cal-
culated with our theory for C/™ ions (blue), the mean activity of HCI (green) and
above the prediction for the hydronium ions H*. The colored points represent
data for the activities of CI~ (black) and H ions (red) measured 2011 by Sakaida
and Kakiuchi [17]. In the right panel we show individual and the mean activity
coefficients for MgSO, calculated with the DHX approximation in combination
with the Justice method. From below, the curves belong to: § 0421_, Na>SO4, Na™.
The upper curve represents In(a),
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(i1) The Justice - transformation moves a big contribution linear in density respon-
sible for electrostatic association to the argument of a logarithmic contribution
without changing the correctness linear in density order.

We note, that the present theory which avoids an explicit use of the MAL is cor-
rect only for higher degrees of ionization say ¢; > 3/4.

The application of the DHX approximation or the MSX approximation in com-
bination with the Justice method to MgSO, - electrolytes works only for concen-
trations below ¢ = 0.1mol /dm> and leads at higher concentrations to problems
which are already at the limit of the applicability of the Justice method. The
reason is that the Bjerrum parameters reach already values of b ~ 8. As a general
tendency we note that the degree of ionization reaches e.g. for MgSO4 a minimum
at ¢ ~ 0.1 and increases then again [7, 22]. This minimum is not observed in our
estimates for single electrolytes based on the Justice method. However we will
show in next section that in mixtures with a dominance of 1 - 1 electrolytes like in
seawater with dominating NaCl, the situation much improves, since we have an
additional screening. The degree of ionization is in the Justice approximation for
pair association given above. Since the G, function rapidly decreases with k any
increase of k by additional 1 - 1 - host ions increases the degree of ionization. This
is the essential point for a correct description of seawater given later. For higher
accuracy requirements, and for higher concentrations, the Justice approximation
may fail and we have to use a fully chemical approach using MAL and MSA as
developed earlier based on the references [7, 22]. We refer to examples of a full
chemical description, with applications to the osmotic and the activity coefficient
for a 2-2 electrolyte with completely symmetrical radii R~ = R4y =R__ =a,
which were given in the works [3, 10, 22]. An extension has been developed by
Yeh, Zhou and Stell and the relation between chemical and physical approaches
has been discussed e.g. by Schroer and others [2]. The chemical approach using
MAL and MSA is shown in [22] to be in good agreement with the results from
the integral-equation method [6]. We prefer here the simpler fully physical ap-
proach based on the Justice method since this is much more simple and suffices
for cases of weak association and for our purpose of seawater treatment for low
and medium salinities as we will show in next section.

An application of our treatment of electrolytes MgSO, is shown in Fig. 1. In this
case our approach yields correct results only for the smallest concentrations, say
for ¢ < 0.05mole/ dm?3. Nevertheless the expressions given here are candidates
for applications to mixtures including higher charges ions and in particular to sea-
water solutions. For higher accuracy requirements, and for higher concentrations,
the Justice approximation may fail and we have to use then possibly a fully chem-

19



ical approach using MAL and MSA as developed earlier based on the references
[7, 22]. We refer to examples of a full chemical description, with applications to
the osmotic and the activity coefficient for a 2-2 electrolyte with completely sym-
metrical radii Ry = Ry = R__ = a = 420pm, which were given in the works
[3, 10, 22]. Many investigators overlook that the treatment is much simplified by
the presence of a high concentration of the 1 - 1 electrolyte NaCl. The reason is
the influence of the prefactor f}r_ which appears in the mass action law in front of
the mass action constant. According to our approach, this pre - factor is in lowest
approximation in dependence of concentration given by

f1-(c) = exp[—2*(KkGo(KR .- )] (40)

This prefactor depends strongly on the screening parameter K which is very differ-
ent for ions in pure water and in seawater. Let us look at an example MgSO4 in wa-
ter and in standard seawater. In the case of standard seawater with S ~ 35 the con-
centration of MgSQy is about ¢ ~ 0.025mol /dm> and according to our estimates
[6] the prefactor may reach a value as small as f}r_ ~ (.02. In a solution in pure
water and about the same concentration of MgSOy of about ¢ ~ 0.025mol /dm?
the K is much smaller and we estimate a prefactor fi_ ~ 0.14. This large dif-
ference by a factor about 5 - 10, is the reason why we are allowed to apply the
method of linearization of the mass action law (the method of Justice) in the case
of seawater. Clearly, this method should not be applied in the case of pure water.
So far we discussed only individual activities and discussed the problems of fit-
ting the free parameters of the theory to data. In a next section we will apply this
procedure to the standard model of seawater with 6 ions and 21 free contact pa-
rameters but before we will discuss some other problems of applications to bound
state formation in with Multiple charged ions.

Higher charged ions are of much interest for applications. There are several pos-
sibilities to take ion association into account [3, 5, 10, 20, 22]. We prefer here for
several reasons fully physical or semi - chemical descriptions. At first, this has
some advantages for the treatment of complex systems like seawater. At second,
and this is the main advantage, we do not need to introduce and to define all the
possible molecular complexes what leads for seawater to an explosion of possi-
bilities. Instead we need here only an account of the cluster integrals describing
two - particle and three - particle interactions. The disadvantage is, that this phys-
ical approach works only at small concentrations so far as the frequency of pair
- and triple - formation is still low. We will show that for seawater the physical
approach still works at least for the region of lower salinities, what means moder-
ate salt concentrations. At really high concentrations, a fully chemical approach
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seems to be more effective, in spite of other disadvantages. As we demonstrated
in foregoing works [6, 7] the mass action law (MAL) approach leads sometimes
to mathematical difficulties as e.g. non - uniqueness of the solutions and instabil-
ities of numerical procedures. In order to avoid these difficulties here we follow
a more simple approach which goes back to the work of Justice and Justice in
the 70thies which is nothing else than a simplified version of the standard chem-
ical approach based on mass action laws [7] which is justified by the statistical
compressibility approach. For introduction of this approach we consider here first
only electrolytes with ions carrying more than one charge as e.g. sulphuric acid
containing the ions SOi_ and the halides of Mg?" and Ca?*. In order to have
an example relevant for recently developed technologies we mention the double
- and triple charged ions of vanadium in the new vanadium - redox - flow batter-
ies considered as a possible solutions of our problems with energy storage. Here
we will concentrate on the treatment of electrolytes relevant for seawater which
contain several double - charged ions as Mg2+, SOi_, and Cat ions. Table 1
gives a few of the contact distances which we will use for calculations [6]. We
restrict here the study to the range, where association is still weak, say, less than
1/3 of the ions are bound by electrostatic effects. Then in many cases the state
may be described by more simple physical (or pseudo - chemical) methods as e.g.
developed in the work of Justice [20]. This way we are able avoid the solution
of highly nonlinear mass action laws for electrolytes which show sometimes nu-
merically unstable solutions or even phase transitions which were not observed in
seawater.

Note that we have after a new fitting adapted some contact distances in com-
parison to the table given in [6]. In the combination of double - charged ions with
Cl™ 1ons we reach Bjerrum parameters in the range of 4 - 6 and even larger, in
pairings with triple charged ions we may reach the range of 6 - 8. The Bjerrum
parameter is the electrostatic energy between two ions at their contact distance,
divided by the thermal energy, k7. As known from tabulated numerical values
[3, 5], the function overall interaction functionKy(&) changes sign at & ~ 4 and
higher order interaction function K4 (&) starts to grow in a very fast way beyond
& = +35. The latter function which describes the Coulombic association is quickly
reaching high values of K4(&) > 10%. This shows that we need a different treat-
ment of that term, which otherwise would create very large negative contributions
to the activities. We have shown in our RG-Preprints parts I and II, following
the ideas of Justice and Justice [20], how the higher order terms G,(n, &) and the
higher orders beyond, which increase so strongly with interaction strength &;; may
be taken into account. The main aspect of a chemical approach is that associates
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Table 1: Table of contact distances for several ion pairs including alkaline earth
metal ions, sulphate ions and adapted “ideal seawater” ions used here.
A —Bion pair RAB RAA RBB

Na—Cl 350 400 360
K—-Cl 310 280 360
Mg—Cl, 350 440 360
Ca—Cl 250 400 360
Nay — S04 250 400 380
Ky — S04 360 280 380
Mg — S804 300 440 380
Ca— S04 320 440 380
Na—-K 300 400 280
Na—Mg 520 400 380
Na—Ca 500 400 440
K—Mg 280 280 380
K —Ca 290 280 440
Mg—Ca 330 440 440
Cl -S04 300 360 380
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are considered in the chemical view as extra particles. This means e.g. that the
association of one anion and one cation at a degree & reduces the effective density
of anions to ony and of cations to any. The simplest way to replace a physical
description by a chemical view is the method of Justice and Justice [20]. This
approach is based on a generalization of the known exact compressibility equa-
tion to ionic solutions derived by Rasaiah and Friedman [9]. Let us briefly repeat
the main idea of this approach. In simplest case of some symmetry between an-
ions and cations the the exact compressibility equation of Friedman and Rasaiah
expresses the mean activities by the correlation function G and reads

dinfi_ G
de —  14c¢G’

G=G,_ +Gy G,-j:/dr(F,-j(r)—l). (41)

where ¢ denotes the concentration and G;; the ionic correlation function. We
note the remarkable fact that in an exact formula for the activities the correlation
integrals appear in an alternative form as 1 4 G in the denominator. Neglecting
the weak dependence of G on the concentration, Justice and Justice perform the
integration and rewrite this formula by some manipulations separating the short
and the long range contributions

1 1 2e? 8
~In __bzex + —7rn0a3 (42)
l1+cG 1+noK(T,a) Do(l+xa) 3

Infy_ ~In

Here, the first term is written in the form In o and « is interpreted as the degree
of dissociation and K(7',a) is a kind of Bjerrum mass-action constant, depending
on temperature and contact distance. This interpretation as a degree of disso-
ciation corresponds to a quasi - chemical view. A strong argument in favor of
this approach is that in the exact compressibility equation for ionic solutions by
Friedman and Rasaiah [9, ?] a similar structure with a denominator appears. We
note that in particular the large bound-state contributions stemming from the +—
correlations appear in the denominator. While the compressibility approach is in
principle in no way more correct than the virial approach, it seems, however, to
be more appropriate for weakly associating electrolytes. This gives us the right
to proceed to a mixed semi - chemical approach like Justice. In a fully chemical
description, the degree of dissociation follows from a minimization of the free
energy and is determined by a mass-action constant and a mass-action law. In a
more physical view, the first term expresses the fact that the density is reduced
due to the association by a factor In(¢t) and formally, the term corresponds to a
summation of contributions which increase with the Bjerrum parameter and are of
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higher order in the concentration. Within the formalism developed by Justice and
Justice [20], a big (negative) contribution which in the virial approach is linear in
concentration and reduces the log of the activity —nogK(T,a) is in the compress-
ibility approach interpreted as a mass-action term. Notice the formal analogy of
this approach to a first-order solution of the MAL which we write in simplest case

I—a K(T,a) o~ o !
=n a); ~ 0y = .
o 0D S 1+ noK(T,a))

(43)

The solution is correct in first linear order. This way we may say that the Justice
approximation corresponds to a quasi - chemical approach of expressing the log
of activities of associating electrolytes. We transfer now the idea of the Justice-
Justice method to our basic DHX - equations by interpreting the large positive
term depending on either K4(&) or G2(§) as a kind of mass-action constant. This
way taking into account all contributions from the function K4 (&) and treating this
term in the spirit of the opposite charge approximation we find in the framework
of the Justice - Justice approach for the degree of free ions of kind i

af =1/(1+57 kLY [5Go(&j, KRij)). ()
J

Using these estimates for the degrees of ionization which take into account only
effects of order ¢ we get now along the Justice - Justice route for the activities
the following approximation which we call DHX including Justice effects:

Infi =Ina - DkTZgj[

(511777:],@ ] Zn] (45)
The MSX - approximation has the same shape, it follows by the change 1 — 1.
By assuming this view we have transformed a big negative term appearing in the
virial expansion to the positive argument of a logarithmic function. From the
mathematical point of view this does not worsen the accuracy but gives more
meaningful physico - chemical results. This is so - to - say, our key idea which
provides very efficient expressions. The dangerous terms leading to negative ac-
tivities are ”screened” and we found by using the Justice ideas a simple and useful
semi - chemical description. Note that at present this estimate for electrostatic
association contains only the second order in the interaction parameters &;; i.e.
8, we omitted so far the higher order contributions. This may lead to increasing
errors for &;; > 6. However this approach may be sufficiently accurate for 2 - 1-
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and 3 - 1 electrolytes. For 2 - 2- electrolytes and other higher valency ionic solu-
tions we find interaction parameters |§;;| > 8 and we may reach the limits of the
Justice approach. In this region the higher order contributions to virial function Ky
steeply increase and cannot be approximated by the term e® of the Taylor series
only. However we should take into account that the higher orders are subject to
stronger screening effects and decrease quickly with increasing eta - values. In
the range of large & - values we may work for strong interactions with asymptotic
approximations for |&;;| > 6 [3, 5, 7]. Note that the procedure of moving terms
to the denominator is not unique. The procedure corresponds technically to sum-
ming up infinite series of terms in the cluster expansion. A deeper foundation of
such a procedure may be developed on the basis of replacing density by fugacity
expansions [2]. An important term for electrolytes with higher charges is the elec-
trical contribution G| which is taking into account the charge asymmetry between
the ions. This term is definitely responsible for a very specific asymmetry be-
tween the individual activities in 2-1 electrolytes. Note that the factors describing
the asymmetry are e.g for magnesium chloride {¢; = 1/6 and o = 1/3. We will
show that the new form which is based on a transformation which did not change
the accuracy allows us to include the description of 2-1 electrolytes without the
heavy machinery of mass-action laws. Summarizing: The main difference to our
earlier methods developed for 1-1 electrolytes is:

(1) The very specific role played by the contribution stemming from G| expressing
asymmetries between the ions.

(i1) The Justice - transformation of a big contribution linear in density responsible
for electrostatic association to the argument of a logarithmic contribution without
changing the correctness linear in density order.

We note, that the present theory which avoids an explicit use of the MAL works
only for higher degrees of ionization say @; > 2/3. On the other hand our expres-
sions are candidates for applications to mixtures including higher charges ions and
in particular to seawater solutions. We make profit of the fact that association ions
appear in seawater only in very small concentrations. The application of the DHX
approximation in combination with the Justice method to MgSOy - electrolytes in
water works only for concentrations below ¢ = 0.05 but leads at higher concentra-
tions to problems which are already at the limit of the applicability of the Justice
method. The reason is that the Bjerrum parameters reach already values of b ~ 8,
so some results need critical analysis and improvement. As a general tendency we
note that the degree of ionization reaches for MgSO4 a minimum at ¢ ~ 0.1 and
increases the again [7, 22]. This minimum is not observed in our simple estimates
based on the Justice method (see Fig. 2). Note that the degree of ionization is in
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the Justice approximation for pure pair association given by

glj

1 —EnR et 6o

o =—"7",
(1+8)

We remember that the term in the denominator includes the higher order binding
contributions to the second virial coefficient. For higher accuracy requirements,
and for higher concentrations, the Justice approximation fails and we have to use
a fully chemical approach using MAL and MSA as developed earlier based on
the references [7, 22]. We refer to examples of a full chemical description, with
applications to the osmotic and the activity coefficient for a 2-2 electrolyte with
completely symmetrical radii Ry = R, = R__ = a, which were given in the
works [3, 10, 22]. The chemical approach using MAL and MSA is shown in [22]
to be in good agreement with the results from the integral-equation method [1, 10].
We prefer here the simpler fully physical approach based on the Justice method
since this is much more simple and suffices for cases of weak association and for
our purpose of seawater treatment for low and medium salinities.

We begin with the study of simple Mg>t — SOﬁ* and Na, — SO4 electrolytes. The
application of the DHX approximation to this electrolytes including the Justice
treatment for pair association. The result is demonstrated in Fig. 2.

We discuss now the application of our treatment to the electrolyte NaSO4. We
note that in deawater the main partners for rhe association of § OZ_ ions are the
ions Nat and K. The concentrations of the double - charged ions in seawater are
relatively low, around 0.05mol /kg for Mg>* and 0.01mol /kg for Ca®>* ions and
around around 0.05mol / kg for SOZ‘. This means, the most important partners of
the ions Mg?T and Ca®* ions are the Chlor - ions and the most frequent partners
of 50421_ ions are the Na* and K™ ions. For all these combinations a new aspect
cames into play, the triple association. In order to include this specific effect we
will study in a next work triple association by including in lowest approximation
the third virial coefficient.

S Applications to ’ideal seawater”

The basic standard solution of a simple seawater model (IAPSO Standard) con-
tains the six most relevant seawater ions 1 - Na™, 2 - K+, 3 - Mg**t, 4 - Ca®*, 5 -
Cl—,6- SOff and about 24 less frequent ions [18]. About the concentrations we
follow the relations corresponding to the paper [18] with some modifications for
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Figure 2: The individual and the mean activity coefficients for MgSO4 calculated
with the DHX approximation are shown in the left panel. From below, the curves
belong to: Mg+, MgSOy, SOi*. The upper curve with a different shape repre-
sents In( ), i.e. the decrease of the activity due to association - pairing effects. In
the right panel we show the mean activity coefficients for Na;SO4 calculated in
DHX approximation in combination with Justice method. From below, the curves
belong to: S OZ’, NaySO4, Na*t, In(). Note that the splitting between the mean
and the individual activities is here rather large.
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numerical reasons. For the composition we are assuming the mol fractions:

vi = 4182, v, = .0091, v5 = .0476, v4 = .0093, vs = .4906, V¢ = .0252.

We call this model here “ideal seawater” since for modelling it may play a similar
role as e.g. the model of Boltzmann’s “ideal gas” or Planck’s “ideal solution”.
Some of the remaining ions such as H*, OH~ and HCO3~ may be considered
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Figure 3: The mean activity coefficients of six most relevant components of stan-
dard seawater [18]. Left panel: The curves calculated here describe (looking at
the smallest concentrations from above): NaCl, MgCl,, CaCly, Na;SO4, MgSOy,
CaSO, as a function of salinity (solved gram salt per kilogram seawater), run-
ning between less than 5g/kg (Baltic Sea) and about 40g/kg (Atlantic Ocean).
Right panel: Corresponding curves calculated by Pitzer methods or Monte Carlo
simulations reported in [19].

as tracers. We study here the individual and mean ion activities as well as the
osmotic coefficients for the “ideal seawater” 1.e. for our adapted version of the
IAPSO standard model of seawater with solute concentrations ranging from typ-
ical Baltic-Sea salinities S ~ 5 to Atlantic salinity S ~ 35 —40. Note that the
main partners of the SOZ‘ ions in seawater are the magnesium ions Mg>" and the
Ca** ions which are in seawater not as frequent as the Na™ and CI~ ions but still
in concentrations around 0.05mol /kg for M g% and 0.01mol /kg for Ca** ions.
In order to to demonstrate the predictions of the present methods for a standard
sea water model with 6 components we give here without details a few figures
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giving the mean and the individual activities and the degrees of association od
the ions. Our curves for the mean activities of the 6 main components are well
compatible with the result of Monte Carlo calculations for the mean activities of
seawater obtained by Ulfsbo et al. [19] and also with result obtained by the Pitzer
approach [6, 11, 19] see Fig. 3. The agreement is so far only qualitative or semi
- quantitative, respectivly, deviations up to 10 percent for some ions are observed.
The reasons for the differences in particular for salts with double - charged ions
have still to be explored in detail. In addition we present also some new result
for for the degrees of association Fig.4, which are comparable with results for a
parametrization given in [23]. Further we provide new results for the individual
activities Fig. 5
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Figure 4: The degree of association (1 — o) for the ions of seawater calculated in
activity (left) and pressure - based approaches (right) on the basis of the DHX -
approximation. The ions corresponding to the curves are (counted from below):
Cl~,K*, Nat, Ca**, 805", Mg*™.

6 Conclusions

In the present survey of calculations for 1-1, 1-2 and 2-2 electrolytes, including
seawater, we summarized several fully analytical statistical methods for calculat-

29



1.02
2 ) 1
&) ‘o
pe % 008
1 e 1
| &) Y]
" ol
= e 0.96
3 ooy
=~ g 094 {
5 =
< g
= 3 0.92 |
0.9
5 10 15 20 25 30 35 40 0 5 101520 25 30 35 40
sqrt(c) of C1 salinity

Figure 5: Left panel: The individual activity coefficients of the six most important
ions in standard seawater- Right panel: Individual osmotic coefficients of the six
relevant ions. We are sorting from below counting the values at salinity 5. The
lowest curve represents the ion SO2~, then follow the curves for Mg?*, K+, Ca**,
Cl=,Na™.

ing activity coefficients and osmotic coefficients in combination with the Justice
method for treating weak association.

Summarizing our findings: Based on results of statistical physics, we recommend
in addition to standard methods for calculating individual activities such as the
Bates - Guggenheim and the semi = empirical Pitzer equations, new statistical
tools for the calculation of individual and mean activities of ions from lower con-
centrations up to moderate salinity. The methods are based on the model of hard
spheres with non - additive radii are nonlinear Debye - Hiickel method (DHX)
supplemented by an application of the Justice - procedure to include weak asso-
ciation (electrostatic pairing effects). The Justice idea is to use elements of the
compressibility equation schema in order to include higher order terms including
association effects. The Justice method has been compared here with a semi -
chemical description developed here on the basis of fugacity expansion for the
pressure in [?, 2]. A comparison shows that the method based on fugacities and
pressures seems to provide better results for seawater. We do not claim that the
statistical formulae developed here with the aim of applications to seawater are in
much better agreement with experiment as the semi- empirical methods used in
practice nowadays. However we claim, that
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(1) our results are physically quite transparent with respect to the model assump-
tions since we use only hard - charged sphere models and as parameters the
charges and the non - additive contact distances,
(ii) the formulae obtained are relatively simple extensions of the tools of Debye -
Hiickel for the activities and osmotic coefficients and they are proven to be con-
sistent up to the order n3/2 with the exact results of Friedman’s cluster theory,
(ii1) the proposed formulae are fully analytical and results can be easily obtained
on any home computer providing tables, and drawn by programs like gnuplot.
We use the methods of extended Debye - Hiickel theories for a first, elementary
estimate, (and later MSA in Henderson - Smith form for more precise calculations
up to moderate concentrations) being exact up to order O(c3/ 2) in the concentra-
tion. Justice’s method is used for including weak association by treating higher
order contributions from the second virial coefficient. We have shown that the
semi - chemical methods by Justice, which are related to activities and the com-
pressibility formalism, are useful for the treatment of weak association effects in
seawater mixtures including 1 -1, 2-1 and 2 -2 electrolytes. The description of the
association effects is even improved here by using a pressure description based
on the fugacity formalism [1, 2, 21]. In the present semi - chemical (or semi -
physical) picture no explicit definition of pairs or triples is needed, we have only
to take care that the relevant contributions from the virial expansions with respect
to the density or fugacity. which describe such association effects are included
and correctly treated.
The input parameters we need in our theory are beside dielectric constants the
contact distances of the ions, i.e. 3 distances for binary electrolytes, but 20 con-
tact distances for 6 - component standard seawater. We derive these parameters by
adaptation to the available data (method SOFD) and use in addition also micro-
scopic information from Monte Carlo and Molecular Dynamics. In forthcoming
work we will show that the present model describes also the transport properties
like conductivities.
A comparison of our results for the mean activities of the 6 major salts in seawa-
ter NaCl, MgCl,, CaCly, NaSO4, MgSO4, CaSO4 as a function of salinity shows
reasonable agreement with Monte Carlo and Pitzer data provided in the paper
[19]. In addition to this we provide the individual activities of the 6 major ions.
Summarizing: The present approach, which is so far not fully explored, pro-
vides for seawater reasonable agreement with results from semi - empirical sets
of formulae like the approach of the Pitzer group and the results of computer -
time consuming Monte Carlo calculations. For standard seawater we need about
20 adapted contact distances, which may depend on temperature and pressure. So
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far all results are given only for 25 degrees Celsius, an extension to other tem-
peratures makes no problems. Just to give an impression about the number of
parameters needed in other approaches: In the popular MIAMI Ionic Interaction
Models which are semi - empirically and based on so - called Pitzer equations one
needs at each temperature nearly 100 parameters, most of them empirically found
and being as a rule without precise microscopic interpretation. Our aim is not to
replace these elaborated and practically very useful apparatus working with the
Pitzer - like equations, but instead to complement this rather complicated appara-
tus by more transparent models with a parameter set which is still large (around
20) but anyhow having a clear physical meaning as contact distances.
Finally we would like to express our convince that objects like seawater, which
are the key for our any reliable climate forecast, need much more attention from
statistical physicists. We should not leave this highly relevant field entirely to
experts in the art of fitting a relatively small set of reliable data and making far
reaching predictions about the future of our planet by help of big computers on
this spare basis.
We should better follow the good tradition founded by Vladimir Fortov, to make
many reliable experiments, check all data again, again and again and develop on
this basis appropriate theories, if possible in several versions to be compared and
checked on the basis of the experimental material.
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