OPTIMIZATION OF A LASER-PLASMA-BASED X-RAY SOURCE FOR ABSORPTION SPECTROSCOPY DIAGNOSTIC OF WARM DENSE MATTER

Martynenko A.S.,^{*1} Pikuz S.A.,^{1,2} Skobelev I.Yu.,^{1,2} Ryazantsev S.N.,^{1,2} Baird C.,³ Booth N.,⁴ Doehl L.Â,³ Durey P.,³ Faenov A.Ya.,^{1,5} Farley D.,³ Kodama R.,^{4,5} Lancaster K.,³ Mckenna P.,⁷ Murphy C.D.,³ Spindloe C.,⁴ Pikuz T.A.,^{1,5} Woolsey N.³

¹JIHT RAS, Moscow, Russia, ²MEPhI, Moscow, Russia, ³UOY, York, United Kingdom (Great Britain), ⁴CLF RAL, Didcot, United Kingdom (Great Britain), ⁵ORTI OU, Osaka, Japan, ⁶ILE, Osaka, Japan, ⁷UoS, Department of Physics, SUPA, University of Strathc, United Kingdom (Great Britain)

*artmartv@mail.ru

X-ray absorption spectroscopy (XAS) [1] diagnostic has been proved to be an effective tool for warm dense matter (WDM) experimental studies. However, XAS requires a short-lived X-ray source (XRS) of sufficiently high emissivity and the absence of intense characteristic lines in a spectral range of interest. In our recent study [2], we discussed choosing its optimum material and thickness to get a bright source in the wavelength range of 2-6 Å (2-6 keV) considering relatively low-Z elements. We demonstrated that the so-called photorecombination region of X-ray characteristic spectral emission is best suited for XAR using a laser-generated X-ray source, due to its featureless spectra of high intensity. Performed experiments showed that the highest emissivity of solid aluminium and silicon foil targets irradiated with a 1 ps high-contrast sub-kJ laser pulse of Vulcan PW laser facility is achieved when the target thickness is close to 10 μ m. An outer plastic layer increases the emissivity even further [3].

^{1.} Bressler C., Chergui M. // Chemical Reviews. 2004. V.4. No. 104. P. 1781.

Martynenko A. S., Pikuz S. A., Skobelev I. Y. and others // Matter and Radiation at Extremes. 2021. V.1. No.6. P.014405.

Martynenko A. S., Pikuz S. A., Skobelev I. Y. and others // Phys. Rev. E. 2020. V. 101. No. 4. P. 043208.