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Motivated by the excess entropy scaling of transport coefficients, we look for correlations between
the properly reduced shear viscosity and thermal conductivity coefficients of dense liquids. We
demonstrate that correlations exist and this can be considered as an analogue of the Stokes-Einstein
relation between the self-diffusion and shear viscosity coefficients. Results presented for four simple
model systems with different pairwise interaction potentials (Lennard-Jones, Coulomb, inverse sixth
power, and hard-sphere) as well as for six real atomic and molecular liquids (Ar, Kr, Xe, CH4, O2

and N2) support this conclusion and allow to identify several universality classes. Practical fits
relating shear viscosity and thermal conductivity coefficients are proposed.

I. INTRODUCTION

Considerable progress in understanding transport
properties of liquids has been achieved over decades [1–
4]. Nevertheless, our understanding of these processes re-
mains incomplete and fragmented as compared to gases
and solids. Difficulties with theoretical description of liq-
uid state dynamics have been recently very well formu-
lated by Brazhkin [5]. Solids and gases can be considered
in some (dynamical) sense as “pure” aggregate states. In
solids the motion of atoms is purely vibrational, while
in dilute gases atoms move freely along straight trajecto-
ries between collisions. This simplifies the development
of transport theories. On the other hand, liquids con-
stitute a “mixed” aggregate state. Both vibrational and
ballistic atomic motions are present. Their relative con-
tribution to atomic dynamics depends on the thermody-
namic state. Near the liquid-solid phase transition vi-
brational motion dominates and solid-like approaches to
transport properties are more relevant. At lower densi-
ties and higher temperatures ballistic motion dominates
and transport is similar to that in non-ideal gases.

In the absence of general theory, we often have to
rely on phenomenological approaches, semi-quantitative
models, and scaling relationships. Among the most use-
ful relationships proposed so far is the relation beween
transport coefficients and internal entropy of simple sys-
tems put forward by Rosenfeld [6]. He demonstrated
that properly reduced transport coefficients are approx-
imately exponential functions of the reduced excess en-
tropy sex = (S − Sid)/NkB, where S is the system en-
tropy, Sid is the entropy of the ideal gas at the same
temperature and density, N is the number of parti-
cles and kB is the Boltzmann’s constant. The system-
independent normalization for the transport coefficients
used by Rosenfeld reads:

DR = D
ρ1/3

vT
, ηR = η

ρ−2/3

mvT
, λR = λ

ρ−2/3

vT
, (1)
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where D, η, and λ are the self-diffusion, shear viscosity,
and thermal conductivity coefficients and the subscript
R denotes the Rosenfeld’s normalization. Here ρ is the
atom density, vT =

√
T/m is the thermal velocity, T

is temperature in energy units (≡ kBT ), and m is the
atomic mass. The scaling proposed by Rosenfeld is [7]

DR ' 0.6e0.8sex , ηR ' 0.2e−0.8sex , λR ' 1.5e−0.5sex .
(2)

Note that sex is negative because interactions between
atoms enhance the structural order compared to non-
interacting ideal gas. It has been demonstrated that
many simple and not so simple systems conform to the
approximate excess entropy scaling, although counterex-
amples also exist. For a recent review of the excess en-
tropy scaling see e.g. Ref. [8].

Another very useful relationship is the Stokes-Einstein
(SE) relation between the self-diffusion and shear viscos-
ity coefficients of simple liquids. For dense simple liquids
it reads

Dη(∆/T ) = αSE, (3)

where ∆ = ρ−1/3 is the mean interatomic separation and
αSE is a weakly system-dependent SE coefficient. Equa-
tion (3) is also known as the Stokes-Einstein relation
without the hydrodynamic diameter (in fact, interatomic
separation plays the role of hydrodynamic diameter) [9].

Equation (3) is satisfied for many simple model and
real liquids near the liquid-solid phase transition [9–
11]. Theoretical models explaining why it should be
approximately so have been proposed [12–14]. In par-
ticular, the theory developed by Zwanzig, based on the
vibrational character of liquid state atomic motion on
short time scales [12, 15], predicts the SE coefficient as
αSE ' 0.13(1 + η/2ηl) = 0.13(1 + c2t/2c

2
t ), where ηl is the

longitudinal viscosity, and ct(l) is the transverse (longi-
tudinal) sound velocity. As a result, the SE coefficient is
allowed to vary theoretically between ' 0.13 and ' 0.18,
which is consistent with the results from simulations and
experiments of many simple liquids [9–11].

Other useful approximations include different variants
of freezing-temperature scaling of transport coefficients
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(see e.g. Refs. [16–22]. In a recent paper we have
demonstrated that the reduced transport coefficients of
Lennard-Jones liquids exhibit a freezing-density scaling
and this scaling is closely related to the density scaling
of transport coefficients of hard-sphere fluids [23]. The
dynamical equivalence between the Lennard-Jones liq-
uid and hard sphere fluids has been also recently dis-
cussed [24]. Various simple models for individual trans-
port coefficients (self-diffusion, viscosity, and thermal
conductivity) have been proposed in the literature.

The purpose of this paper is to examine correlations
between the coefficients of shear viscosity and thermal
conductivity for dense simple liquids. We demonstrate
that correlations indeed exist. This allows us to put for-
ward an approximate relationship between shear viscos-
ity and thermal conductivity coefficients, resembling the
Stokes-Einstein relation. The approach potentially al-
lows to estimate all transport properties from only one
known (self-diffusion, viscosity, or thermal conductivity).

II. MOTIVATION

In dilute gases the transport properties are determined
by collisions between the constituent atoms. The trans-
port coefficients can be evaluated using the Chapman-
Enskog theory [25]. In the first approximation

D =
3
√
π

8

vT
ρΩ1

, η =
5
√
π

8

mvT
Ω2

, λ =
75
√
π

32

vT
Ω2
, (4)

where Ω1 and Ω2 are the transport integrals (momentum
and energy transfer cross sections integrated with the
Maxwellian velocity distribution function). The latter
depend on the mechanism of the interaction between the
atoms. Since both, the shear viscosity and the thermal
conductivity coefficients are inversely proportional to Ω2,
the relation between these coefficients is independent of
the exact interaction mechanism:

λm

η
=

15

4
. (5)

This relation is a consequence of the same processes be-
hind the momentum and energy transport in dilute gases
and does not hold in the liquid state [26].

On the other hand, using the Rosenfeld’s normaliza-
tion (1) with the SE relation without the hydrodynamic
diameter we get

Dη(∆/T ) = DRηR. (6)

The excess entropy scaling (2) then predicts the SE coef-
ficients as αSE = DRηR ' 0.12. This is a reasonable pre-
diction although the actual values of the SE coefficient
are slightly higher (' 0.14 for one-component plasma
and Yukawa fluids, ' 0.15 for Lennard-Jones liquids, and
' 0.17 for hard-sphere fluids [11]).

Excess entropy scaling arguments applied to the rela-
tion between the shear viscosity and thermal conductiv-
ity coefficients yield

λR ' 4.10η
5/8
R . (7)

This points out to an analogue with the Stokes-Einstein
relation, although the analogy is incomplete. The mech-
anisms of diffusion and shear viscosity in dense liquids
remain intimately related, while the mechanism of ther-
mal conductivity is different. The dominant contribu-
tion to thermal conductivity in dense liquids is due to
collective excitations (we do not consider liquid metals,
where the dominant contribution comes from transport
and scattering of electrons) [27]. Despite this difference,
the thermal diffusivity and kinematic viscosity coeffi-
cients of some noble and molecular liquids exhibit similar
(system-dependent) temperature dependence and their
minima are relatively close for different substances [27].
The ratio mλ/η (equal to 15/4 in an ideal gas) exhibits
non-monotonous dependence on density, but is not very
much different from ' 4 (the deviations of ∼ 50% were
reported for a Lennard-Jones liquid and ∼ 30% for a one-
component plasma models [26]). The Prandtl number
Pr = cpη/mλ (where cp is the specific heat at constant
pressure) increases on approaching the freezing point, but
even there is not much different from unity [28]. Thus, it
is not very unreasonable to look for some interrelations
between the thermal conductivity and viscosity coeffi-
cients.

Below, using literature data on the shear viscosity and
thermal conductivity data of several real and model sys-
tems we will verify the following: (i) is there a convinc-
ing correlation between these transport coefficient; (ii)
whether the scaling is universal; and (iii) whether the
form suggested by Eq. (7) is appropriate.

III. RESULTS

We have analysed the literature data for the viscos-
ity and thermal conductivity coefficients of several real
and model systems. Among the real systems investigated
are the liquified noble gases (argon, krypton and xenon),
methane, oxygen and nitrogen. Model systems consid-
ered in this work are Lennard-Jones (LJ) liquids, one-
component plasma (OCP), a fluid with inverse power law
∝ 1/r6 (IPL6) repulsive interaction, and the hard-sphere
(HS) model.

If one consider density dependence of the reduced
transport coefficients DR, ηR and αR of simple liquids,
a qualitative difference will become apparent. The self-
diffusion coefficient decreases monotonically with density
towards the freezing point. On the contrary, the shear
viscosity and thermal conductivity coefficients depend
non-monotonically on the density. They exhibit minima
at approximately the same system density, indicating the
crossover between the gas-like and liquid-like scalings of
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FIG. 1. (Color online) Correlations between the reduced ther-
mal conductivity coefficient λR and the shear viscosity coeffi-
cient ηR of simple atomic fluids. The symbols correspond to
the available data for various real and model fluids (see the
legend). The dashed curve denotes the excess entropy based
scaling of Eq. (7). The solid curve denotes a fit based on the
data for argon.

the transport coefficients with density. A good illustra-
tive example can be found for instance in Ref. [23], which
discusses a freezing density scaling of transport coeffi-
cients in LJ liquids. In this paper we consider sufficiently
dense liquids at densities higher than those correspond-
ing to the minima in η and λ. This corresponds to the
liquid-like regime on the phase diagram. In this regime
both η and λ increase monotonically towards the freezing
point.

The data for liquified noble gases as well as oxygen and
nitrogen are taken from Ref. [29]. The data for methane
are taken from Refs. [30]. There exist extensive datasets
on transport properties of LJ liquids. Since the reduced
transport coefficients of LJ liquids along isotherms ex-
hibit quasi-universal freezing-density scaling [23], it is
sufficient to consider one isotherm. We chose an isotherm
T∗ = T/ε = 2 (ε is the energy scale of the LJ potential)
and employ the viscosity and thermal conductivity coef-
ficients tabulated in Refs. [31, 32]. For a strongly cou-
pled OCP fluid we use the data from MD simulations in
Refs. [33, 34]. In addition, we add two points for IPL6
repulsive potential that are available from Ref. [35]. Fi-
nally, the transport data for the hard-sphere (HS) sys-
tems are taken from recent MD simulations reported in
Refs. [36, 37].

The results for the liquified noble gases, LJ, OCP and
IPL6 fluids are shown in Fig. 1. We observe that the vis-
cosity and thermal conductivity coefficients are indeed
well correlated. The data points for various monoatomic
liquids considered tend to group around a quasi-universal
curve. The excess entropy based dependence of Eq. (7) is
plotted by the dashed curve. Overall, a fairly good agree-
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FIG. 2. (Color online) Correlations between λR and ηR for
N2, O2, and CH4. The symbols correspond to the available
experimental data from Refs. [29, 30]. Open circles denote
the numerical results for the OCP. The dashed curve denotes
the excess entropy based scaling of Eq. (7). The solid curve
is a fit based on the data for oxygen.

ment with the data points is observed. For liquified noble
gases argon, krypton and xenon the universal correlation
between λR and ηR is particularly striking. Based on the
excess entropy scaling outcome, Eq. (7), the functional
form

λR ' αηβR + γ (8)

can be expected. Fitting the data for argon we have
obtained α ' 4.88, β ' 0.50, and γ ' −0.40. This fit is
also representative for krypton and xenon. The LJ data
points are close to those for the liquified noble gases. The
OCP thermal conductivity is slightly higher at strong
coupling. Nevertheless, all the data points are grouped
relatively close, and we can consider them as belonging
to the same universality class.

In Fig. 2 we plot the dependence of λR on ηR for molec-
ular liquids: liquid nitrogen, oxygen, and methane. A
clear universality is again observed, but the universality
class is different from that of liquid noble gases. The ex-
cess entropy based scaling of Eq. (7) is not perfect in this
case. At the same time the functional form of Eq. (8)
remains appropriate. Based on the data for oxygen we
have obtained α ' 10.51, β ' 0.29, and γ ' −5.25. This
fit remains relevant for nitrogen. The data for methane
show some deviation as the density grows and the re-
duced transport coefficient increase. Interestingly, the
data points for the OCP fluid lie relatively close to those
of molecular liquids considered.

A canonical reference system in condensed matter
physics is a system of hard spheres. It is often assumed
that certain structural and dynamical properties of soft
interacting particle systems can be mapped into hose
of HS systems, even though there exists a soft-to-hard-
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FIG. 3. (Color online) Correlations between λR and ηR for
the HS and OCP systems (see the legend). The dashed curve
denotes the excess entropy based scaling of Eq. (7). The solid
curve is the fit based on HS data from Refs. [36, 37].

sphere crossover in fluid excitations and thermodynam-
ics [38]. Recent results on the freezing density scaling of
the transport properties of Lennard-Jones liquids demon-
strated that while the diffusion and shear viscosity coef-
ficients can be rather well mapped into those of the HS
fluid, the thermal conductivity coefficient of dense HS
fluids is systematically larger than that of LJ liquid [23].
For this reason we show the comparison of the depen-
dence of λR on ηR of the extremely soft OCP fluid and

HS fluid separately, see Fig. 3. The thermal conductiv-
ity of the HS fluid is systematically higher as expected.
The fit using Eq. (8) yields in the HS limit α ' 22.62,
β ' 0.19, and γ ' −18.14. This defines the HS univer-
sality class.

IV. CONCLUSION

Our main conclusions can be formulated as follows.
There are certain correlations between properly reduced
shear viscosity and thermal conductivity coefficients of
dense liquids. This provides us with an analogue of
Stokes-Einstein relation between the diffusion and vis-
cosity coefficients. The relationship between the viscosity
and thermal conductivity is, however, not truly univer-
sal. Certain system-dependence has been documented
(and this resembles situation with the Stokes-Einstein
relation, too [10, 11]). Different systems may belong to
different universality classes. We have identified three
universality classes in this study: argon (atomic fluids),
oxygen (molecular fluids), and hard-sphere. If the uni-
versality class is known, knowledge of one transport co-
efficient allows to estimate the other two. This can be a
very useful simplification in describing various phenom-
ena pertinent to the liquid state.
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