Москва, Россия

Изменение свойств молекул H₂ при фазовом переходе в разогретом плотном водороде

Сартан Р. А.

1 декабря

2022

Содержание

1. Постановка задачи

2. Метод расчета

- параметры моделирования
- определение «молекулы»
- метод оценки концентрации и времени жизни *H*₂

3. Результаты

- среднее межатомное расстояние
 - время жизни
 - концентрация

4. Физика фазового перехода флюид-флюид

1. Постановка задачи

Постановка задачи

Что происходит с молекулами H₂ при фазовом переходе?

1. Геометрия молекул

- 2. Динамические свойства молекул
 - 3. Молекулярный состав

2. Метод расчета

Параметры моделирования

Программа VASP Число частиц *N* = 512 Шаг по времени $\Delta t = 0.5$ fs Размер базиса $E_{\rm cut} = 1200 \, {\rm eV}$ ХС-функционал **GGA PBE** Термостат Нозе – Гувер *k*-сетка **Baldereschi**

mean-value point

Уравнение состояния

Определение «молекулы»

Только из определения нельзя отличить H_2 от H_2^+

Оценка концентрации молекул H₂

Концентрация молекул *n*(H₂) рассчитывалась по формуле:

$$n(H_2) = 2\frac{\langle N \rangle}{A}$$

где (…) – усреднение по всем конфигурациям, *A* = 512 – числа атомов в расчетной ячейке *N* – число построенных связей

Без определения молекул (B. Holst, R. Redmer (2008) Phys. Rev. B 77 184201):

$$n = 2\frac{A-1}{V} \int_0^r 4\pi r'^2 g(r') dr'$$

где V – объем ячейки g(r) – ПКФ r = 0.748 А

Оценка времени жизни молекул H₂

$$\tau = \frac{\langle N \rangle}{\langle \Delta N \rangle} \Delta t$$

- где *N* общее число молекул
 - *∆N* число распавшихся молекул за 1 шаг МД
 - *∆t* шаг МД
 - (...) усреднение по конфигурациям

Если за 10 фс из 20 молекул распалась одна, то среднее временя жизни – 200 фс.

Можно оценить время жизни молекул, даже если оно больше времени моделирования.

Методы вычисления свойств молекул H₂

Для анализа свойств молекул водорода по МД-траекториям дано формально определение "молекулы": атомы считаются связанными, если расстояние между ними меньше некоторого r_{cut} . При этом, за время существования этой связи атомы хотя бы раз были ближе, чем $r_{threshold}$.

Определив связи между атомами, можно оценить степень диссоциации и время жизни молекулярной связи с помощью формул следующих формул:

$$n(H_2) = 2 \frac{\langle N \rangle}{A}$$
$$\tau = \frac{\langle N \rangle}{\langle \Delta N \rangle} \Delta t$$

3. Результаты

Концентрация молекул

$$\Box - r_{cut} = 1.1$$
 Å $r_{threhshold} = 0.70$ Å
+ $- r_{cut} = 1.1$ Å $r_{threhshold} = 0.75$ Å
 $\Delta - r_{cut} = 1.0$ Å $r_{threhshold} = 0.70$ Å
 $\mathbf{x} - r_{cut} = 1.0$ Å $r_{threhshold} = 0.75$ Å
При фазовом переходе
концентрация
начинает падать плавно

Полная диссоциация достигается при больших плотностях

Время жизни молекул

$$\Box - r_{cut} = 1.1 \text{ Å } r_{threhshold} = 0.70 \text{ Å}$$
$$+ - r_{cut} = 1.1 \text{ Å } r_{threhshold} = 0.75 \text{ Å}$$
$$\Delta - r_{cut} = 1.0 \text{ Å } r_{threhshold} = 0.70 \text{ Å}$$
$$\times - r_{cut} = 1.0 \text{ Å } r_{threhshold} = 0.75 \text{ Å}$$

При фазовом переходе среднее время жизни *H*₂ падает на 2-3 порядка

Распределение времени жизни

Среднее межатомное расстояние в H_2

- $\Box r_{cut} = 1.1 \text{ Å } r_{threhshold} = 0.70 \text{ Å}$
- $+ r_{cut} = 1.1 \text{ Å } r_{threhshold} = 0.75 \text{ Å}$

$$\Delta - r_{cut} = 1.0 \text{ Å} r_{threhshold} = 0.70 \text{ Å}$$

$$\times - r_{cut} = 1.0 \text{ Å} r_{threhshold} = 0.75 \text{ Å}$$

При фазовом переходе средняя длина связи *H*₂ имеет небольшой скачок

Физика фазового перехода

- Скачком меняется геометрия молекул
- Скачком меняется время жизни молекул

Резко при фазовом переходе: $H_2 \rightarrow H_2^+ + e^-$

II. Плавная диссоциация

- Плавно падает концентрация молекул

Постепенно, после фазового перехода: $H_2^+ \rightarrow H + H^+$

Линии 100, 80, 60, 40: оценка концентрации молекул H₂, произведенная в этой работе

Линии 100, 80, 60, 40: оценка концентрации молекул H₂, произведенная в этой работе

Линии 70, 30: оценка концентрации молекул H₂, произведенная в Geng, 2019

1: скрытая теплота ф.п. (Ohta 2015)

1: скрытая теплота ф.п. (Ohta 2015) 2: переход неметалл-металл (Zaghoo 2016, 2017)

1: скрытая теплота ф.п. (Ohta 2015)

2: переход неметалл-металл (Zaghoo 2016, 2017)

3: абсорбция (McWiliams 2016)

1: скрытая теплота ф.п. (Ohta 2015)

2: переход неметалл-металл (Zaghoo 2016, 2017)

3: абсорбция (McWiliams 2016)

4: абсорбция (Knudson 2015)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)
- 6: полупроводниковое состояние (Goncharov 2019)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)
- 6: полупроводниковое состояние (Goncharov 2019)

7: металлизация (Weir 1996)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)
- 6: полупроводниковое состояние (Goncharov 2019)

7: металлизация (Weir 1996) 8: отражение (Knudson 2015)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)
- 6: полупроводниковое состояние (Goncharov 2019)

7: металлизация (Weir 1996) 8: отражение (Knudson 2015) 9: отражение (Celliers 2018)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)
- 6: полупроводниковое состояние (Goncharov 2019)

7: металлизация (Weir 1996)

- 8: отражение (Knudson 2015)
- 9: отражение (Celliers 2018)

10: металлическое состояние (Goncharov 2019)

- 1: скрытая теплота ф.п. (Ohta 2015)
- 2: переход неметалл-металл (Zaghoo 2016, 2017)
- 3: абсорбция (McWiliams 2016)
- 4: абсорбция (Knudson 2015)
- 5: абсорбция (Celliers 2018)
- 6: полупроводниковое состояние (Goncharov 2019)

7: металлизация (Weir 1996)

- 8: отражение (Knudson 2015)
- 9: отражение (Celliers 2018)

10: металлическое состояние (Goncharov 2019)

Пунктирные линии – границы полупроводникового и металлического водорода (Goncharov 2019)

Пунктирные линии – границы полупроводникового и металлического водорода (Goncharov 2019)

Правая граница совпадает с переходом к полной диссоциации

Левая граница совпадет с положением фазового перехода

4. Выводы

Выводы

При фазовом переходе:

- 1. Среднее межатомное расстояние имеет небольшой скачок
 - 2. Среднее время жизни молекул падает на несколько порядков

 $H_2 \rightarrow H_2^+ + e^-$

3. Концентрация двухатомных молекул падает плавно

$$H_2^+ \rightarrow H + H^+$$

Дополнительные слайды

Сравнение уравнений состояний разогретого плотного водорода и газа Ван-дер-Ваальса

- Относительно малый скачок плотности.
- Значительное перекрытие метастабильной и равновесной ветвей по плотности.
- «Перевернутый» вид бинодали: при приближении к критической температуре давление падает.

Теория функционала плотности

Уравнения Кона-Шема решаются итерационно, пока не будет достигнута сходимость по энергии

W. Lorenzen, B. Holst, R. Redmer.

First-order liquid-liquid phase transition in dense hydrogen.

Physical Review B 82, 19 (2010).

W. Lorenzen, B. Holst, R. Redmer.

First-order liquid-liquid phase transition in dense hydrogen.

Physical Review B 82, 19 (2010).

Функционал плотности

$$E = E[n] = \left\langle \psi \left| T_{kin} + V_{ext} + V_{H} + V_{xc} \right| \psi \right\rangle =$$

$$= T_{kin} + V_{ext} [n] + V_{H} [n] + E_{xc} [n]$$

$$T_{kin} = \int \psi_{i}^{*} \left(-\frac{\hbar^{2}}{2m} \Delta \right) \psi_{i} dr$$

$$V_{ext}[n] = \int V_{ext}(r)n(r)dr$$

$$V_{H}[n] = \frac{e^{2}}{2} \int \frac{n(r)n(r')}{|r-r'|} dr' dr$$

$$E_{xc}[n] = \int \varepsilon (n(r), \nabla n(r))n(r) dr$$