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OUTLINE

The dynamic structure and response function characterize the excitation spectrum
of the system and the amount of energy absorbed by the system when perturbed
by-ah-external field, for example, x-ray Thomson scattering and others. These
functions contain information about inter-particle correlations and time evolution.

Dynamic Structure Factor and Response Function in Heisenberg representation
Wigner Representation of the Dynamic Structure Factor and Response Function

Path integral representation of the time propagator matrix elements

Path integral representation of the Wigner function

Wiener—Khinchin theorem applied to the stochastic trajectories in path integrals

Quantum density of state

Radial distributions, dynamic structure factor and response function for
ideal system of scatterers, strongly coupled soft-spheres and plasma media



Dynamic Structure Factor and Response Function

The Hamiltonian of the system of NV particles H = K+U contains the kinetic K and the

interaction U = ) ; @(ri;) energy operators. We assume the presence of a perturbation
field:

Hy=H+at)A (1)

where a(t) is some kind of field (c-number) and A is the dynamical system variable
(operator) coupled to the field. The a(t)A) perturbs the equilibrium state of the system,
the response will be measured as an expectation value of a dynamical variable B.

Te(e 14 B) — Te(e™#B) = [ dtXpa(t - t)a(t), (4)

where xpa(t) is real, independent of a(t) function and ypa(t) = 0 for ¢ < 0. The
response function can be presented as

Xpa(t —t) =i0(t — t)Trpo[B(t), A()] =

i0(t — t'){([B(t), A(t)])o = i0(At)([B(At), A(0)])o, (5)
where At =t — ', ([B(t), A(t)])o = (B(t)A(t'))o — (B(#)A(t))o and operators B(t) and
A(t) are in the Heisenberg representation for H. The O©-function guarantees causality,

i.e., contributions to the induced fluctuations at time t can only arise from perturbations
fort' < &.

a(t) A
magnetic field | magnetization
electric field electric polarization
sound wave mass density




Dynamic Structure Factor and Response Function

Sw)=2"" /dAt Tk (eimcée_imzfl) e WAt — exp (-%) Spa(w)
= exp (—g) A /dAt Ty (e"ﬁﬁeiﬁmée—iﬂmﬁ) g oAt (2)

where § = 1/T is the reciprocal temperature, t. = At — i3/2 is a complex-valued
quantity, i is the imaginary unit and Z (N, V,T) = Tr(po) = Tr(e="#) is the canonical
partition function of the system of N particle in volume V. So S(w) is

S(w) = 21 / dAt e—iwAt /dqdﬁdijdé’

(a|B() (a]e"| ) (a|4]3) (3]~ ). ®

According to the fluctuation-dissipation theorem the imaginary part of the time
and spacial Fourier transforms (IMRF) of the density-density response function (RF)
can be presented through the dynamic structure factor Spa(k,w) (1, 2, 43]

X(k:w) = ImXBA(ka k,’k':kaw) =1 :Oﬂ'SBA(kaw) (6—w T 1) ) (6)
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The name fluctuation-dissipation theorem arises from the fact that DSF determines the scattering intensity
of particles by density fluctuations in the system. It determines the amount of energy absorbed by the system
when perturbed by an external potential and determines also the imaginary part of the inverse dielectric
function.



Wigner Representation of the Dynamic Structure Factor and Response Function

The Wigner representation of the density-density correlation function S(k,w) can
be identically rewritten in the form that includes the Weyl symbols of operators and
the generalization of the the Wigner—Liouville function W:

S(kaw) = exXp (_%}> SBA(kaw)
= (2m)72V [dPQAPQ B(k, PQ)A(k, PQ) [ dite 2w (PQ; PQ; At)

= (2n)™" [aPQ4PQ B(k, PQ) Ak, PQ)W (PQ: PQ:uw) (7
where we have introduced a short-hand notation for 6/NV-dimensional phase space points,

viz., PQ and 13@, with the momenta and coordinates, respectively, of all the particles in
the system. Here B(k, PQ)) and A(k, PQ) denotes the Weyl symbol [28] of the density
operators, which describe system perturbations by different external fields

the system. Here B(k, PQ)) and A(k, PQ) denotes the Weyl symbol [28] of the density
operators, which describe system perturbations by different external fields

Bk PQ) = [ dzexp(—i<?|_§_>)<__; B §>

fz ) = p(Q, k)



P Wigner Representation of the time propagator matrix elements

W (PQ; PQ; at) = 27 [ [ dEd PR (QF; QE; A1),
G (Q& Q¢ At) = G* (Q& Q5; At) G~ (Q&; Q& At)
<Q+ 1Ht|@——><@+ )| Q - > (9)

W (P—Q;}?@;At) is presented by the Fourier transforms of the product of the
“symmetric in time directions” propagators G = (Q_f, CAQE; /_\.t) and G~ (@E;@; At)

with related Fourier transforms

~

G (Q& QE; At) = <@+ g €] Q — §> ,
F (@;/Q\g;w) = /dAt Gt (@;@;At) R
:2ﬁ<@+§’5(wi—ﬂ)e_ﬁﬁ/z‘@—§>, (10)

.\
0-)

iHt*

e (@E;@;At) = <@+-§ e




Path integral representation of the time propagator matrix elements

F+ (Q; Q¢ /dAt <Q+ ] Q - > At /dAt / ﬁ dg;dg,
j=1

9 <Q + § eiattei-fm| g > (g, 72| g,)
g

—iAt(wi-H) /M‘ 4 > < 5}”1/21»1' q3>

™

| o sy [ R g
<qM ’ —iAt(wi- H)/M‘ qM> <qM |e‘5ﬁ/2M‘ Q’ L §> . (14)

The Weyl symbol of the operator H can be presented as the Hamiltonian function
H(p7 q) - z 1 p; /Tn’z W Zz<] ¢(T1]) [27 28]

) = [dgexpli(ple)) (q+¢/2|H]a - €/2), (15)

[
w
T

The final expression for the product at € = 0 and 5 = () is equal to
| —iAt, o = —iAt, . 4
<Q 7 (wl—H) g1>jH2<qj i (wl— H) gj>
1 —iAt
M (w _ H(Pj7 Qj))a

~ (%)MM X H /dP exp(—i (P;|&;)) exp

exp exp




Canonical ensemble

In (3) we tacitly assumed that the operators H, A and B do not depend on
the spin variables. Therefore, the summation over spins can be safely moved here
and below, so we do not explicitly mention the spin variables, as if they are not
essential. However, the spin variables ¢ and the Fermi statistics can be taken into
account by the following redefinition of W™ (P, @) in the canonical ensemble with
temperature 71’

W* (P.Q) = iy 5 () 8(0, P, fate™ 10 (g, 2024 g,)

- ] e—sﬂ/ow —39/0\1 ~
o (g g )

1 > .
—— X (1) (M—-1) o ’ M)
= ZA /dfexp( i(Pl£))p"” ...p ;;( 1)**8(0,Po’) e PP |5

(24)

where the sum is taken over all permutations P with the parity xp, index j labels the



Path integral representation of the Wigner function

, (M = ‘
W(P,Q) =~ ZC£E'3)4’\)’! exp [— Z (7"|77j|2 + \i](/ (Ql i Cj))]

=1

M Z‘” —y_1 0U(Qi+¢) -y 1 0U(Q1 +§)
: D _1\U-1) 1 17 \: p. —_1\G-1) 1 J
. e"p{47.— < <‘PJ T 7 S TR e e TV A
-r' ‘N’/Q T 4 re /
x det]| dxe|, det”‘gkt”(fw/zﬂ)ﬂ (14)
where
| M

¥ o B 1 k_ st
Pre = exp{—m |rie|” /M } OXP{ ~oM E_ ( ( +1m+( )""P("kt""(cj "Cj) ))}
n = G = (s The = (QF = QY), (k,t =1,...,N). The constant C'(M) is canceled in

Monte Carlo calculations.

Let us stress that approximation (14) have the correct limits to the cases of
weakly and strongly degenerate fermionic systems. Indeed, in the classical limit
the main contribution comes from the diagonal matrix elements due to the factor
exp{—m |7‘kt|2 /M} and the differences of potential energies in the exponents are equal to
zero (identical permutation). At the same time, when the thermal wavelength is of the
order of the average interparticle distance and the trajectories are highly entangled the

Qj = (PQ(M+1) m Ql)j]\;l + Q1+ G




The symbolic representation of the dynamic structure factor and propagators
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Figure 1. (Color online) The symbolic representation of the DSF and the propagator
G (@ @/f At) by Eq. (9). The “vertical” <qJ exp 14‘3; (wi - H |q > and “horisontal”
<qJ ’exp 3H/2J\I’ q(1+1)> < ’exp—?H/ZM‘ 4 1)>) matrix elements are shown
by the related arrows. Matrix elements G (Qf : Q{, At) and G~ (QE - QE: At)

correspond to the upper and bottom trajectories with “the oppisite time directions”
and linking matrix elements < = ’A‘ Q + §> and <Q £ lB‘ Q + §> respectively

(here, for example, M = 6). For the DSF the variables £ and ¢ have to be equal to
zero due to arising §(£) in matrix elements of the operators B and A not depending

on momentum.



Wiener—Khinchin theorem

a distribution W = WTW~. Then making use of the Wiener—-Khinchin theorem
[49, 50, 51, 52] we present the product of the expected values of the spectral densities
of these trajectories F* (@ Q{;w) F- (Q{;@; w) as the Fourier transform of the

expected value of their correlation function, which defines the DSF
(2#)_12‘\/dm dPQAE dE ¢ P10 H(PIE)
x p(Q. Wp(@. k)F* (Q&: Q&;w) F~ (Q& Q& w)
= (2m)"12Y / dPQ dPQAE dé PP (Q, k)p(@, k)

x [dteG* Q& Q&:t) G~ (Q6: Qi) = S(h,w). (29)
For an isotropic system we can average over angles so the DSF becomes
8m3
S(lkl,w) = (2—)(,\—\ deQ
% F+ (m —~Q~() w‘) P (Z}() @ w) Z Slll(lklle ___Qzl)
i k@ — Qi
¥ sin([k[|Q; = @il)
N ,/deQ 0|6 (wi - g /2 .
6‘\\ | | ( ) | >| ZJ |A||Q - Q|
(30)
Thus, the DSF calculation is reduced to a WPIMC simulation of random
trajectories in the phase space with a distribution W = WTW~ (see Figure 1).

According to Egs. ( 2, 6 and 30 ) the IMRF and DSF are defined by the WPIMC
sin(|k|Q; Q)
ol - |kl1Q5—Qil

trajectories connecting ); and ;. The WPIMC can be also used for the WPIMC
simulation of thermodynamic properties. In the classical limit the W is reduced to the

Boltzmann distribution.

averaged histogram of the value % 2 versus the full energy w of the



Quantum density of state

In our approach we are going to rewrite (2( E) in an identical form using the property
of the delta function

Q(E) = Tr{6(E1 — H)I} = Tr{6(F1 — H) exp(EI1 — H)}
- % dwTr{exp iw (Ei - ﬁ) exp(EI — H)} = % /dle“{eXP K(w) (Ei = I:I)}

1
:%/dw/dq1<q1

where k(w) = 14iw, angular brackets (¢|¢) mean the scalar products of the eigenvectors
|q) and |§) of the coordinate operator § ( (dlg) = glq), (q|d) = 6(q — q)), I = [ |q)dg(q|
is the unit operator, ¥(q) = (q|¢)) is the wave function [35] ), the angular brackets
in expression {qi|A|q) mean the scalar products of vectors |¢;) and |A|q) arising after
the action of operator A on vector |q), 1 is the imaginary unit. Further in the text, it

exp k(w) (Ei — ﬂ)

Q1>a (1)



- The symbolic representation of the DOS by the path integrals.
The * "vertical" and * " horizontal " arrows are the matrix elements.
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Energy distribution functions and density of state at rs~2 and T=60 K (2D)

Figure 3. (Color online) The energy distribution W(E) (panel a) and DOS (panel
b) for the system of soft-sphere fermions at a fixed density r, = 2.2 and temperature
T =60K ([W(E)E = 1, (E) in conditional units). Lines: _1—ideal system; 2—
n = 0.6; 3—n = 1. Small oscillations indicate the Monte-Carlo statistical error.
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Figure 4. (Color online) The RDFs for the same spin projections (panel a) and
DOS (panel b ) for a system of soft-sphere fermions at a fixed density r, = 2.1 and
temperature 7 = 60 K.

Lines: 1—ideal system; 2 —n =0.2; 3—n = 0.6;: —n = L.0; b—n = 1.4.
Small oscillations indicate the Monte-Carlo statistical error.



He-3: radial and energy distribution functions, density of state (3D)
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Figure 1: (Color online) The RDF g(r), IED W (FE) and DOS Q(E)) at rs = 9.
Lines: 1 -T=35K,2-T=42K,3-T=54K,4-T=13K, 5—e~F (panel b) and Q ~ +/E (panel c).
Results are In conditional units. Small oscillations indicate the Monte-Carlo statistical error.
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Figure 2: (Color online) The RDF g(r) and DOSs Q(FE) at T = 13 K (panel a) and b)) and Q(F) at T = 2 K K (panel c)).

Lines: 1-rs=5,2-rs=7,3-1rs=9,4-7r:s=12,5-Q ~ VE (panel c¢) . Results are in conditional units. Small oscillations
indicate the Monte-Carlo statistical error.




Monte Carlo simulation of the two-component plasma media.
Energy distribution functions and density of state for plasma and
non correlated uniformly distributed in space protons (OCP).

8 10
E/k,T

2.0
C: 1
10 F
15
G F
3
1.0 10
0.5 10°}
r ¢
00 0 2 4 6 107
E/k,T
1.2 .
1 F
L AL
C:1.0 e 107f
0.8 ———3 G}
e e s, 4 10-3[
06 ...... 5 d
04 e
10°
022 E N\
7
0.0 v 107 =X
0 2 4 -2

Figure 2: (Color online) The typical IEDs (panels a)) and DOSs (panels b and c¢) for TCP (upper row) and OCP (bottom row)
at s =4. Lines: 1 -T =0.5Ha,2-T=1Ha, 3-T = 1.5Ha, 4 - T = 2Ha, 5 — ‘ideal plasma” (panel a)) and DOS Q (panel
b) and c)) respectively. Small oscillations at large and negative energies indicate the Monte-Carlo statistical error. The W (E)
is normalized to unity.



Radial distributions, dynamic structure factor and response function for ideal Fermi Systems.
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Figure 2. (Color online) The ideal fermions for r, = 6.8. The WPIMC RDFs
at T = 20 K (panel a), lines: 1 - the same spin projections, 2 - the opposite spin
projections. The opposite spin WPIMC DSF (panel b)) and WPIMC IMRF (panels
c) and d)). The WPIMC IMRF at T"= 20 K , lines: 1- |k| =0.1,2- |k| =04, 3 -
|k| = 1. The analytical estimations of the IMRF. The Lindhard’s IMRF for the ground
state at 7' = 0 [55], lines: 4 - |k| = 0.1, 5 - |k] = 0.4, 6 - |k| = 1. The IMRF for the
point-like uncorrelated classical scatterers at 7' = 20 K (Eq. (32)), lines: 7 - |k| = 0.1,
B 8 - |k| =0.4,9 - |k| = 1. The DSF and IMRF are scaled in conditional units.



Radial distributions and response functions for strongly coupled soft sphere systems.
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Figure 3. (Color online) The WPIMC simulations for 77" = 20 K and r, = 6.8.
Panel a). Lines: 1 - the same spin projections RDFs, 2 - the opposite spin projections
RDFs. Panel b) - IMRF for opposite spin fermions. Panel ¢) - IMRF for the same
spin fermions . IMRFs are in conditional units. Irregular oscillations indicate the
Monte-Carlo statistical error. The w is normalized by temperature equal to 7' = 20 K.
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Figure 4. (Color online) The WPIMC simulations for 7' = 20 K and r, = 5.4. Panel

a): 1—the same spin projections RDFs, 2—the opposite spin projections RDFs. Panel ———
b): IMRF for opposite spin fermions. Panel ¢): IMRF for the same spin fermions.
IMRFs are in conditional units.



Basic results

+ The Wigner formulation of quantum mechanics is used to derive a new
path integral representation of quantum density of states, dynamic
structure factor and response function .

A path integral Monte Carlo approach is developed for the numerical
investigation of the density of states, internal energy and spin--resolved
radial distribution functions for a strongly correlated soft--sphere
fermions.

The peculiarities of the quantum density of states, dynamic structure
factors and response functions of the soft—spheres plasma media are
investigated and explained.
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