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Electrical Conductivity of WDM: DFT-MD Simulations 
Benchmarks, Virial Expansions, e-e Collisions    



Outline 

•  Electrical conductivity in WDM: Strongly Coupled Coulomb Systems, Quantum statistics 

•  Analytical calculations, Green’s function method, exact results in some limiting cases 
(benchmarks). 

•  Numerical simulations: density-functional theory for electrons and molecular-dynamics for 
ions (DFT-MD) simulations. Path-Integral Monte-Carlo (PIMC) 

•  Combine different approaches: Example: the electrical conductivity σ(T, n) of Hydrogen 
and Beryllium plasmas. 
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Pressure-Produced Ionization of Nonideal 
Degenerate Plasmas and Electrical Conductivity 
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“ab initio” calculations vs. analytic expressions 

Green’s functions: 
perturbation theory,  
partial summations 
quasiparticle, screening 

DFT-MD simulations 
Exchange-correlation  
functional 

PIMC simulations 
sign problem 
limited particle number 

thermodynamics: equation of state (EoS) 

electrical conductivity: Kubo formula 

known equilibrium statistical operator 
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uniform electron gas electron-ion interaction limiting cases 

quantum statistical, many-particle approaches 

physical properties – correlation functions 
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Kubo-Greenwood QMD calculations with the standard
approximations for the exchange-correlation energy func-
tional give the exact value for the plasma conductivity in
the low-density limit. A Green’s function approach may
solve this problem but this has not been performed yet.
Therefore, we suggest to apply our benchmark criterium
on future large data sets of Kubo-Greenwood QMD cal-
culations to investigate the contribution of e�e collisions
in the low-density limit.

The approach described here is applicable also to
other transport properties such as thermal conductivity,
thermopower, viscosity, and di↵usion coe�cients. Of
interest is also the extension of the virial expansion to
elements other than hydrogen, where di↵erent ions may

be formed and the electron-ion interaction is no longer
pure Coulombic.
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[53] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[54] A. Baldereschi, Phys. Rev. B 7, 5212 (1973).
[55] Y. V. Ivanov et al., Sov. Phys. JETP 44, 112 (1976).
[56] M. M. Popovic, Y. Vitel, and A. A. Mihajlov, in Strongly

Coupled Plasmas, edited by S. Ichimaru (Elsevier, Yamada
1990), p.561.

7

Kubo-Greenwood QMD calculations with the standard
approximations for the exchange-correlation energy func-
tional give the exact value for the plasma conductivity in
the low-density limit. A Green’s function approach may
solve this problem but this has not been performed yet.
Therefore, we suggest to apply our benchmark criterium
on future large data sets of Kubo-Greenwood QMD cal-
culations to investigate the contribution of e�e collisions
in the low-density limit.

The approach described here is applicable also to
other transport properties such as thermal conductivity,
thermopower, viscosity, and di↵usion coe�cients. Of
interest is also the extension of the virial expansion to
elements other than hydrogen, where di↵erent ions may

be formed and the electron-ion interaction is no longer
pure Coulombic.

Acknowledgments

We thank M. Desjarlais, M. French, and V. Recoules
for valuable and fruitful discussions and for providing
data sets. This work was supported by the North Ger-
man Supercomputing Alliance (HLRN) and the ITMZ of
the University of Rostock. MS and RR thank the DFG
for support within the Research Unit FOR 2440. MB
was supported by the European Horizon 2020 program
within the Marie Sk lodowska-Curie actions (xICE, grant
number 894725).

[1] C. M. Franck and M. Seeger, Contrib. Plasma Phys. 46, 787
(2006).

[2] M. Kikuchi, Energies 3, 1741(2010).
[3] J. D. Lindl, Inertial confinement Fusion (Springer, New York,

1998).
[4] S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett.

76, 1860 (1996).
[5] P. H. Roberts and G. A. Glatzmaier, Rev. Mod. Phys. 72,

1081 (2000).
[6] M.-B. Kallenrode, Space Physics (Springer, Berlin-

Heidelberg, 2004).
[7] M. French, A. Becker, W. Lorenzen, N. Nettelmann, M.

Bethkenhagen, J. Wicht, and R. Redmer, Astrophys. J. Suppl.
S. 202, 5 (2012).

[8] A. Becker, M. Bethkenhagen, C. Kellermann, J. Wicht, and
R. Redmer, Astron. J. 156, 149 (2018).

[9] A. S. Brun and M. K. Browning, Living Rev. Sol. Phys. 14, 4
(2017).

[10] L. D. Landau and E. M. Lifshits, Physical Kinetics, Vol. 10
of Course of Theoretical Physics (Pergamon Press, Oxford,
1981).
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Plasmas, (Birkhäuser, Basel 1984).
[45] M. French and R. Redmer, Phys. Plasmas 24, 092306 (2017).
[46] M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F.

Bechstedt, Phys. Rev. B 73, 045112 (2006).
[47] C. E. Starrett, High Energ. Dens. Phys. 19, 58 (2016).
[48] C. E. Starrett et al., Phys. Plasmas 19, 102709 (2012).
[49] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[50] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[51] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[52] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
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B. Virial expansion for the conductivity of hydrogen plasma, comparison with the Lorentz model plasma

Within the framework of gLRT, the inverse conductivity or collision frequency is obtained in terms of correlation
functions of moments of the distribution function (12). The more moments are taken, the better the result. Fast
convergence has been shown [14], and we consider only the two-moment approximation which takes into account the
contribution of e� e collisions in reasonable approximation,

⇢(2) = ⇢Ziman
1

Dei

00

Dei

00(D
ei

11 +Dee

11)� (Dei

01)
2

(25/4)Dei

00 +Dei

11 +Dee

11 � 5Dei

01

(20)

where Dei

nm

are correlation functions of the time derivatives of the moments, the generalized forces Ṗ
n

and Ṗ
m

. For
details, in particular the definition of the correlation functions, see, e.g., Ref. [14] and Appendix A, Eqs. (A2),
(A3). Since the e� e interaction conserves total momentum P0, the lowest order correlation function including e� e
collisions is dee11. The account of this correlation function is not a simple factor but more complex, see Eq. (20). The
correlation functions are evaluated in second order perturbation theory as indicated above for the Ziman formula.

We used a screened Coulomb potential with the screening parameter  or s, Eq. (15). In addition to the static
screening by ions (s = Z) or by electrons and ions (s = 1 + Z), we consider dynamical screening with the RPA
dielectric function, to compare with the quantum Lenard-Balescu equation. Calculations have been performed in
Refs. [13, 14, 21–24] where the details are given. Note that the dynamical screening of electron-ion collisions is
di↵erent from the dynamical screening of e� e collisions. In Ref. [13], the RPA result for e� i collisions in H plasmas
is reproduced with the e↵ective screening parameter s

ei

= 4/e = 1.4715, whereas for e � e collisions the e↵ective
screening parameter is s

ee

= 0.5367.
We now continue to consider the results for H-plasmas (Z = 1) for the first and second virial coe�cient. (For

arbitrary Z see Ref. [23], where also the local-field correction for the electronic RPA and the ion-ion structure factor
was studied.) The approximation depends on the number of moments (12) what corresponds to the variational
solution of the kinetic equation. We introduce a superscript (l) for the number of moments, and a subscript denoting
the account of e � e collisions. Using only the lowest moment [m = 0 in Eq. (12)], we reproduce the Ziman formula
(17). To describe H plasmas, we should consider dynamical screening and use the RPA expression for the dielectric
function. In the following we consider only the first two leading contributions of the virial expansion of the reduced
resistivity,

⇢̃
(1)
ei

= ⇢
⇤,(1)
ei

x = ⇢⇤Ziman(sei)x = 1.67109� 0.6217x (21)

which is a linear dependence on x. Only e � i collisions contribute, e � e collisions give no contribution. For the
screening, s = s

ei

= 4/e was taken in Eq. (17).
In the two-moment approximation (m = 0, 1), e� e collisions contribute. We obtain [22]

⇢
⇤,(2)
ei+ee

x = 0.8649 + 0.4844x. (22)

Dynamical screening was taken in random phase approximation. As shown in [22], the inclusion of higher moments
of the distribution function leads to a fast convergence. With 6 moments, we obtain

⇢
⇤,(6)
ei+ee

x = 0.8467 + 0.4921x. (23)

The Spitzer result ⇢Spitzer1 = 0.84624 [11] for the first term is nearly reproduced. We are able to provide analytical
results for the virial expansion of the electric conductivity of fully ionized plasmas, ⇢1 and lim

T!1

⇢2(T ).
If we neglect the e� e contributions in Eq. (20) we obtain the Lorentz plasma result

⇢
⇤,(2)
Lorentzx = ⇢

⇤,(2)
ei

x = 0.51419 + 0.63934x. (24)

This is also very close to the Lorentz result ⇢Lorentz1 (2⇡3)1/2/16 = 0.492126 for the first term [14].
All these virial expansions are shown in the virial plot ⇢⇤x as function of x, Fig. 3. In addition, the DFT-MD

simulations [9] are shown, and the extrapolation

⇢⇤,DFT�MDx = 0.492 + 0.989x (25)

is indicated. These DFT-MD simulations performed under extreme conditions with high temperatures and low
densities, where the number of particles is su�cient to obtain convergent results, show a Lorentz plasma behavior,
e � e collisions are not taken into account. In agreement with Fig. 1, we confirm that the linear dependence on the
parameter x, i.e. the virial expansion up to the second coe�cient, is a suitable approximation.



Electrical conductivity of plasmas 
Kinetic theory (Boltzmann equation): Spitzer (low-density limit) 
Linear response theory: Kubo formula (warm dense matter) 

�(T, µ) = e2�
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Vol
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electron total momentum P =

P
k ~k a†kak

Kubo-Greenwood formula, DFT-MD simulations: electron-electron collisions included?  
M. P. Desjarlais et al. 2017, N.R. Shaffer and C.E. Starrett, Phys. Rev. E 101, 053204 (2020) 

3

Correlations appear for the plasma Hamiltonian with complete interaction V . No closed-form solutions are known, and we
must perform approximations to solve this many-body problem. Here we discuss three possibilities:

1. Perturbation expansion with respect to V . We obtain analytic expressions for arbitrary orders of V in terms of nonin-
teracting equilibrium correlation functions, which can be easily evaluated using Wick’s theorem. However, we have no
proof of the convergence of this series expansion and no error estimate. In order to make this analytical approach more
e�cient, the method of thermodynamic Green’s functions and Feynman diagram technique were elaborated1,2,9. Conver-
gence is improved by performing partial summations corresponding to special concepts such as the introduction of the
quasiparticle picture (self-energy ⌃), screening of the potential (polarization function ⇧), or formation of bound states
(Bethe-Salpeter equation). This leads to useful results for the properties of the plasma in a wide range of T and n. However,
as characteristic for perturbative approaches, exact results can be found only in some limiting cases.

2. This drawback is eliminated by numerical simulations of the correlation functions that apply to arbitrary interaction
strength. In Born-Oppenheimer approximation, density functional theory (DFT) for the electron system with given ion
configuration and molecular dynamics (MD) for the ion system are applied to evaluate the correlation functions. Single-
electron states are calculated by solving the Kohn-Sham equations. The total energy is obtained from the kinetic energy
of a non-interacting reference system, the classical electron-electron interaction, and an exchange-correlation energy that
includes, to a certain approximation, all unknown contributions.

The DFT-MD approach has been successfully applied to calculate the thermodynamic properties of complex materials in
a wide range of T and n, which will not be reported here, see, e.g., 10,11,12,13 and the references given there. For electrical
conductivity (7), the Kubo-Greenwood formula7,14

Re [�(!)] = 2⇡e2
3m2

e!⌦
…
k

wk

N…
j=1

N…
i=1

3…
↵=1

⌅
f (✏j,k) * f (✏i,k)

⇧Í j,k Çp↵ i,kÎ2�(✏i,k * ✏j,k * `!) (9)

was used to calculate the frequency-dependent dynamic electrical conductivity �(!) in the long-wavelength
limit16,17,18,19,20,15. Kohn-Sham wave functions  i,k from density functional theory calculations are used to calculate the
transition matrix elements of the momentum operator Çp↵ . The Fermi-Dirac distribution f (✏) accounts for the average
occupation at energy ✏, and the summation over momentum space k contains the k-point weights wk.
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Solution of the kinetic equations 
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Correction factor from RPA 
screening 

0 0,1 0,2 0,3 0,4 0,5 0,6
1/ln[Θ/Γ]

0

0,2

0,4

0,6

0,8

1

1,2

ρ 1

ef
f (T

,x
)

ρ
1
Spitzer

ρ
1
Lorentz

Karakhtanov
DFT-MD
e-e corrected

T = 2000 eV

T = 200 eV

n = 40 g/ccm

n = 2 g/ccm
e-e corrected

DFT-MD

0.9965

0.4917

0.732

slope

Lorentz

Spitzer

RPA-Debye screening 

G. R., Phys. Plasmas 31, 042301 (2024) 



Generalized virial expansion 
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Virial plot: H and Be plasmas 
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Conclusion 
•  Analytical calculations and Green’s functions approaches provide us with 

exact results (benchmarks) in some limiting cases. We show where a virial 
expansion of the resistivity can be applied.  

•  Simulations become expansive and time consuming in some limiting cases 
(for instance, in the low-density limit). Comparison with analytical results 
can used to show the accuracy of  calculations, to eliminate wrong results, 
and to construct interpolation formulas. 

•  We have shown that electron-electron collisions are not included in ab-initio 
DFT-MD calculations, we expect that PIMC calculations can provide us with 
correct results in the low-density region. A renormalization factor can be 
introduced to take the contribution of electron-electron interaction into 
account. One has to take care to avoid double counting, for instance with  
screening. 


