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Motivation

1. Existence and threshold of the structural transition in the Coulomb clusters.

2. Crystallization and melting of the cluster core.

3. Particle pressure in the Coulomb cluster (limited one-component plasma).
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Molecular dynamics of the Coulomb cluster

Dimensionless (Coulomb) quantities (N is the number of particles)
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Shell structure of the moderate size Coulomb clusters (N < 1100), Г = 500



Melting of the shells (2D) and “melting” of a central particle (3D); N < 1100



Radial distribution functions in the region of cluster core formation and melting



Snapshots of the hcp Coulomb cluster core and its cross section (hcp+bcc)
N = 5000, Г = 500



Formation of a crystalline core upon cluster solidification and growth



A crystal core first emerges at                       .

Two-parameter model (TPM) for the Coulomb cluster
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Size dependence of the crystallized particle fraction  



Size dependence of the Coulomb cluster formation energy.
<U> is the LOC potential energy and U0 is the hcp optimum crystal energy



From the virial theorem
for the forces

Compressibility factor for the particle subsystem in LOCP
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From the virial theorem
for the energy            
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where Up is the particle pair
interaction energy            

Ub is the energy of particle 
interaction with the background
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Thus,

Compressibility factor for the particle subsystem in LOCP
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Interpolation of MD data



Size dependence of the LOCP particle compressibility factor, Γ = 500
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The model reduces dynamics of the treated 
system to the motion of a single particle:

Compressibility factor in the ion sphere model
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Since                                                    ,  we obtain

in accordance with MD simulation.

From this model, the total potential energy per one particle is a sum of

2 3m v T= − = −rf 0
c
Z ≡

(1) the work of separation of the neutral ion spheres, contribution = 0;

(2) the work of separation of an ion from its sphere, contribution = –1/2 – 1;

(3) the energy of uniformly charged sphere background, contribution = 3/5.
Then the sum is

which is the Lieb–Narnhofer lower bound.
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Thank you for your attention!


