THERMODYNAMIC ASSESSMENT OF THE Al₂O₃-MgO-TiO₂ SYSTEM

Ilatovskaia M.,*^{1,2} Fabrichnaya O.¹

¹TU-BAF, Freiberg, Germany, ²IMMIT, St. Petersburg, Russia *mariia.ilatovskaia1@iww.tu-freiberg.de

The Al₂O₃-MgO-TiO₂ system is of interest for industrial applications: MgAl₂O₄-based materials have a good combination of physical and chemical properties such as high refractoriness, high mechanical strength and high resistance to chemical attack, while the addition of Al₂TiO₅ improves thermal shock resistance of spinel. The Al₂O₃-based ceramics are proposed as filter materials for steel and Al-alloy filtration from MgAl₂O₄ and Al₂O₃ inclusions. Thus, thermodynamic modelling of the Al₂O₃-MgO-TiO₂ system is important for thermodynamic database development to model interactions in filter material.

To provide an experimental base, Al₂O₃-MgO-TiO₂ samples were prepared by the co-precipitation routine followed by prolong annealing experiments and then characterized using XRD, SEM/EDX, and DTA. Four isothermal sections of the Al_2O_3 -MgO-TiO₂ system at $1000 - 1464^{\circ}C$ were constructed based on obtained results which are mainly consistent with the literature data [1-2]. Formation of continuous solid solutions with spinel, Mg2TiO4-MgAl₂O₄, and pseudobrookite, MgTi₂O₅-Al₂TiO₅, structures at high temperatures was confirmed. The solid-state reaction, Al_2O_3 + $TiO_2 + Sp \text{ s.s.} = Psbk \text{ s.s.}$, was observed at about 1160°C for the first time. On the liquidus surface, the eutectic invariant reaction between MgTiO₃, Psbk s.s and Sp. s.s. was detected at 1602°C. Another invariant reaction of transitional type, $L + Al_2O_3 = Sp s.s + Psbk s.s.$, was observed at 1733°C. Obtained experimental data for the Al₂O₃-MgO-TiO₂ systems were used to derive its thermodynamic database. The compound energy formalism was applied to describe solid solutions, while to describe oxide liquid the two-sublattice partially ionic liquid model was implemented. A special attention was paid to reproducing the degree of inversion when the spinel phase changes from inverse Mg_2TiO_4 to normal $MgAl_2O_4$ and in the pseudobrookite phase from normal MgTi₂O₅ to completely disordered Al_2TiO_5 .

Boden, P., and Glasser, F.P., Phase relationships in the system MgO-Al2O3-TiO2, Trans. J. Br. Ceram. Soc., 72(5) (1973): 215-220.

Berezhnoi, A.S., and Gul'ko, N.V., Investigation of the MgO-Al2O3-TiO2 system, Ukr. Khim. Zh. (Russ. Ed.) 21(2) (1955): 158-166.