SIZE DEPENDENCE OF MOLYBDENUM MELTING AND CRYSTALLIZATION TEMPERATURES

Akhmedov E.N.

IGR DSC RAS, Makhachkala, Russia aen-code@yandex.ru

Based on the RP-model, presented in [1], the state equation (P) of molybdenum has been calculated. Interatomic interaction was described by the Mi-Lennard-Jones pair potential. The potential parameters were determined by fitting to the state equation, the bulk modulus, and the coefficient of thermal expansion of molybdenum [2].

Proceeding from the Lindemann criterion under isobaric conditions (P = 0), the melting temperature (T_m) has been calculated for nanocrystals with different size and surface shape. It was found that the value T_m decreases with the decrease of the atoms number (N) in the nanocrystal, and it is more noticeable when the shape deviates from the most energet-ically optimal (a cube for the RP-model).

The surface pressure compress the nanocrystal and to keep isobaric conditions P = 0 the interatomic distance must be increased that facilitates melting process.

For the RP-model curves $T_m(N, P = 0)$ end at N_{cr} – minimum possible size of a nanocrystal. For a cube $N_{cr} = 10$, and N_{cr} increases with the nanocrystal shape deformation. If we assume that the value of N_{cr} is the size of the crystalline nucleus with the particular surface shape at $P(N_{cr}) = 0$, then we can get the size dependence of the crystallization start temperature T_{cr} . Extrapolation of the isobaric dependence $T_{cr}^*(N_{cr}^{-\frac{1}{3}}) =$ $T_{cr}(N_{cr}^{-\frac{1}{3}})/T_m(\infty)$ to a macrocrystal $(N_{cr}^{-\frac{1}{3}} = 0)$ showed that the value $T_{cr}^*(N_{cr}^{-\frac{1}{3}} = 0)$ is 0.713 for rod-like and 0.857 for plate-like shapes of the nanocrystal. This agrees with the Tarnbull rule, which allows us to state that obtained dependence $T_{cr}^*(N_{cr}^{-\frac{1}{3}})$ describes the dimensional dependence of the molybdenum crystallization start temperature at P = 0.

This paper has been supported by Russian Foundation for Basic Research (Grant No. 16-03-00041_a) and the Program of the Presidium of the Russian Academy of Sciences (project No. I.13).

^{1.} M.N. Magomedov. Crystallography Reports, 2017, 62, 3, 480-496.

E.N. EAkhmedov. Journal of Physics and Chemistry of Solids, 2018, 121, 62-66.