ANALYSIS OF THE NITROGEN PLASMA JET DESTRUCTIVE EFFECT ON THE HEAT-RESISTANT MATERIALS

Khromov M.A.,* Chinnov V.F., Sargsyan M.A., Kavirshin D.I., Scherbakov V.M., Efimov A.V.

> JIHT RAS, Moscow, Russia *volteg@mail.ru

Processes of heat and mass transfer in the interaction zone of a hightemperature subsonic plasma stream with the surface of a ablating heatresistant material determine the rate of its destruction [1-4]. Intensive work is being carried out to create and study new heat-shielding materials based on composites (SiC/C, HfB₂–SiC, etc.), and the mechanisms of their destruction under the influence of high-temperature and chemically active media are studied in detail [2–4]. The purpose of this study is to establish changes in the parameters and composition of the plasma in the destructive interaction zone of an incident high-enthalpy nitrogen plasma jet and samples from carbon-containing materials. The complex [4] created in the JIHT RAS provides the possibility for creating and studying the plasma of various gases (Ar, He, N₂, air) and their mixtures over a wide range of temperatures (T=10-30 kK), mass flows 0.2-5 g/s and velocities of 50–1000 m/s in the output section of the plasma torches. An experimental estimate of the mass loss rate of the sample material in real time is performed by the methods of two-position high-speed video imaging and the method of laser profilometry developed by the authors using a "laser knife" [5]. The studies used isotropic MPG-6 graphite with a cylindrical shape and density of $\rho \approx 1.70 - 1.8 \text{ g/cm}^3$, and anisotropic graphite UPV-1T with a density of $\rho \approx 2.1-2.2$ g/cm³ in the form of a parallelepiped with a characteristic thickness of 3–5 mm and a side of 15–25 mm.

At specific thermal loads of 1-2 kW/cm², experimental data revealed spatial-temporal changes in the samples materials decrease rate (3-20 mg/cm²s), their surface temperature (2000–3500 K), the electron temperature of the incident plasma stream (12000–6000 K), plasmochemical composition in the region of "injection" of the products of destruction.

A joint analysis of the spatial-temporal variations in the concentration of the main destruction byproducts, carbon atoms and the CN radical, and the rate of loss of the carbon-containing sample material, makes it possible to establish the relative role of the processes of heterogeneous ($C_{solid} + N \rightarrow CN$) and homogeneous ($C_{gas} + N + M \rightarrow CN + M$) carbon nitrization in the interaction zone.

The work is carried out with the partial support of the Russian Foundation for Basic Research on grants No 16-08-00323 and No 17-08-00816.

- Mihatulin D.S., Polezhaev Yu.V., Reviznikov D.L. Teploobmen, termohimicheskoe i termoerozionnoe razrushenie teplovoy zaschity. Moscow, Yanus-K, 2011.
- Helber B., Turchi A., Scoggins J.B., Hubin A., Magin T.E. // Int. J. Heat. Mass. Tran. 2016. V. 100. P. 810.
- Lei L., Yiguang W., Liping L., Liyuang D., Guolin W., Yonghong L. // Carbon. 2016. V. 103. P. 73.
- Chinnov V.F., Tyuftyaev A.S., Kavyrshin D.I., Ageev A.G., Sargsyan M.A., Gadzhiev M.Kh.// High Temp. 2018. V.56. No. 1. P.25.
- Ageev A.G., Kavyrshin D.I., Sargsyan M.A., Gadzhiev M.Kh., Chinnov V.F. // Int. J. Heat. Mass. Tran. 2017. V.107. P.146.