Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

IMPACT

ENGINEERING

HYPERVELOCITY IMPACT
PROCEEDINGS OF THE 2005 SYMPOSIUM

Lake Tahoe, California
9-13 October 2005

Guest Editor
WILLIAM P. SCHONBERG

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial


http://www.elsevier.com/locate/permissionusematerial

Available online at www.sciencedirect.com
INTERNATIONAL
JOURNAL OF

ScienceDirect IMPACT
ENGINEERING

- d e .,,.:'
LSEVIER International Journal of Impact Engineering 33 (2006) 625-633

F.

www.elsevier.com/locate/ijimpeng

Hypervelocity impact modeling with different equations of state

M.E. Povarnitsyn™, K.V. Khishchenko, P.R. Levashov

Institute for High Energy Densities, Russian Academy of Sciences, Izhorskaya Street 13/19, 125412 Moscow, Russia
Available online 13 November 2006

Abstract

This study focuses on the simulation of hypervelocity impact problems with different equations of state (EOSs). We used
a high-order multi-material Godunov method in Eulerian form and applied an “‘exact” multi-material Riemann solver to
find more accurate individual phase advection fluxes regardless of the aggregate state. We investigated effects of melting in
strong shock waves, evaporation in rarefaction waves and spallation. We found that a careful treatment of the spall
formation mechanism is of greatest importance in obtaining accurate numerical results. Three types of wide-range EOSs
are discussed—caloric EOS in unified analytical form for condensed and rarefied matter; thermodynamically complete
stable multi-phase EOS in tabular form which does not allow for metastable states; and thermodynamically complete
metastable EOS in tabular form which permits metastable gas, liquid or solid phases.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Spallation; Fragmentation; Equation of state; Aluminum; Lead

1. Introduction

The ability of multi-material Eulerian methods to handle arbitrarily large deformation and the generation of
new free surfaces makes them attractive for problems of hypervelocity impact and penetration. These
phenomena may often be described in terms of high-pressure physics (P> 1 Mbar). This limitation makes the
deviatoric stress components much smaller than the pressure so that deviatoric stresses may be ignored, at
least for early event times. Therefore, some hydrocodes treat all materials as inviscid fluids and the evaluation
of mean pressure in a multi-material cell is based on the classical mixture theory for ideal fluids found in
thermodynamics. Application of such codes is justified in modeling of accident scenarios associated with
spacecraft shielding or safety-related problems in nuclear energy production. Impact loading of plate targets
by impactors is extensively discussed in the review articles [1,2].

One of the fundamental problems in multi-material physics is the numerical treatment of interfaces. In a
typical case, an interface separates two nonmixing materials and numerical calculation may introduce some
smearing and artificial mixing of the components. For the validity and quality of the numerical simulation, it is
essential to resolve interfaces with a proper accuracy.

Early hydrocodes have dealt with gases and since then a considerable success in treatment of condensed
materials in wide range of parameters has been achieved. One should keep in mind the important difference
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between condensed matter and gas physics and that is the ability of solids and fluids to sustain negative
pressure. A complication arises in the case of spallation when the pressure drops below the dynamical tensile
strength. This difficulty may be overcome by introduction of a fragmentation model into the numerical
scheme. Dynamical strength basically is a function of many parameters (time, velocity, temperature, density,
etc.) and the physics that governs the fragmentation process is not entirely understood. Models of spall growth
under different loading conditions are discussed in [3.4].

2. Method

Our original numerical method is based on a conservative high-order multi-material Godunov approach in
Eulerian form [5] and admits the usage of arbitrary equation of state (EOS). We model multiple phases by
constructing an effective single phase in which the density, specific energy, and elastic properties are given by
self-consistent averages of the individual phase properties, including their relative abundances. Following the
ideas of Henderson et al. [6], we construct an effective single phase by holding the entropies of each phase
constant during compression giving an expression for the isentropic bulk modulus of the mixture:

-1
Ks= !Zfa/Ka] : (1

where f, and K, denote the volume fraction and isentropic bulk modulus of component a, respectively. The
entropy of each phase may be held individually constant because thermal equilibrium cannot be maintained
on the scales of length and time, which we used in our experiments. For instance, the time scale for thermal
diffusion is of order L?/k, where L is the length scale and k is the thermal diffusivity. The time scale for
pressure equalization is of order L/c, where ¢ is the sound speed. In condensed matter the thermal diffusivity
and sound speed are typically of order 10°m?/s and 10°m/s, respectively and thus, processes become
comparable for length scales on the order of 10 m, a few orders smaller than our typical computational cell
size.

We used a piecewise linear interpolation of primitive variables with the slope limiter of van Leer [7] together
with an upwind characteristic tracing method [8], which makes our scheme second-order by space and time in
zones of smooth flow. We used a second-order volume-of-fluid interface reconstruction algorithm [9] to
decompose the effective single-phase fluxes back into the appropriate individual component phase quantities.
Possible cavitation of material under negative pressures is controlled by the model of instant fragmentation.
There are several criteria of spall formation incorporated into our numerical method. First of all, we control
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Fig. 1. Cold curve of aluminum (1) together with model dynamical tensile strength (2). Possible pressure values are limited from below by
cold curve in zones I and IIT and by dynamical tensile strength in zone II.
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Fig. 2. Phase plane of the temperature complete metastable equation of state of aluminum. Phase states are as follows: gas (1), liquid (2),
melting region (3), solid (4), metastable gas (5), stable liquid—gas mixture (6), metastable liquid (7), metastable solid—liquid mixture (8), and
metastable solid (9). Boundary between phases (1) and (2) with the critical point (10) is conventional.

the moment of pressure drop below the dynamical tensile strength (constant in our experiments), Fig. 1. The
second assumption is that none of the rarefaction waves may cross the cold curve, the position of which is
known from the EOS, Fig. 1. For condensed fraction, the dynamical tensile strength limit is reached first (zone
IT in Fig. 1), whilst states of near liquid—gas or gas phases (p <0.5 g/cc) are limited by the cold curve (zone I).
Finally, the temperature complete metastable EOS provides us with information about the phase state of
matter (Fig. 2) and we suppose that metastable liquid does not exist under negative pressure. If one of the
discussed criteria is accomplished, vacuum is introduced into the computational cell and pressure is relaxed to
zero value.

In some numerical experiments, we have found that use of wide-range EOSs requires accurate
solution to the Riemann problem especially in the vicinity of phase transitions. Some Riemann solvers can
give a very bad fit to the correct solution of the problem and result in undesirable oscillations and even
unphysical states after the integration step. For this reason we used an ‘“‘exact” multi-material Riemann
solver that is quite expensive computationally but on the other hand gives the best possible solution regardless
of the phase state under consideration. The extremely wide range of resolvable densities (almost ten orders) in
our calculations is a justification of the “‘exact” solver usage, details of which will be discussed in the next

section.
3. The Riemann problem

Solution to the Riemann problem is a backbone of any numerical method based on Godunov’s
approach. The canonical Riemann problem is an initial value problem consisting of two constant left and
right states with different velocities and pressures in juxtaposition. The solution of this problem is a set of
waves with amplitudes chosen to satisfy appropriate interface compatibility conditions. Careful treatment of
the Riemann problem makes the algorithm more accurate and robust. Unfortunately, this problem cannot be
solved explicitly even in the case of ideal gas and thus several approximate approaches have been
developed [8,10,11]. Acoustic approximation seems to be the simplest way to find the intersection point
of left and right curves on the pressure particle velocity plane (P, U) and may be applicable to problems with
weak discontinuities. It is well known that a surprisingly large number of condensed materials have a very
simple linear relation between shock and particle velocities. Dukowicz [11] used this fact to construct a
quadratic P(U) function as an approximation of shock Hugoniot. Some materials are not well described by
this assumption (especially near phase transitions). To overcome these difficulties, we use more general
approach in the solution to the Riemann problem. It may be referenced as the ‘“‘exact” solver and
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accomplished by writing

p (VL-7)+p—P)(d7 /aP)

i dpP, P>P;(shock wave)

UL(P) = Uy — P 2\/(P—PL)(VL—V) (2a)
P 1 .
Ip. N dp, P< P; (rarefaction wave)

p (Vr=7)+Pr—P)(d7 /dP)
Pr o\ J(P—Po)(Vr—T)

8 dP, P> P (shock wave)

Un(P)=Ux +4 (2b)
fPR # dpP, P < PR (rarefaction wave)
A PRs
where
_ V+(V—-VLr)7/2
(@7 /ap)., = + ( LRr)7/ 3)

(P—PLr)7/2—Ks

is a derivative along the Hugoniot curve and 7 is a thermodynamic Griineisen parameter of the mixture. In
these equations, the specific volume of the mixture

Zfoc/VfX

isentropic bulk modulus K, and Griineisen parameter 7 are available from the EOSs for each component.

In a multi-material computational cell, we should specify thermodynamic Griineisen parameter of the
mixture. The simplest model for calculation of this parameter is obtained by assuming that during isopycnic
process, individual phase densities remain constant and there is no energy exchange between phases. Under
these conditions one can derive

—1
7= [Zfa/va] : (5)

We applied a fifth-order Runge—Kutta method to integrate system (2) to the common upper limit of
integration P until the left-hand sides Uy (P) and Ugr(P) are equal. Then, other thermodynamic variables under
these conditions are known from the evaluation of corresponding integrands. For instance, during rarefaction
of the mixture the individual phase density p, and specific internal energy E, of the component o are known
from the following relations 0p,/0P = p,/K, and OE,/0P = P/(p,K,). Thus, all individual phase densities
and specific energies can be calculated and then used in construction of individual fluxes.

-1

V= , “4)

4. The equations of state

We used three types of EOSs: caloric EOS for condensed and rarefied matter (EOS1), thermodynamically
complete stable EOS in tabular form (EOS2) and thermodynamically complete metastable EOS in tabular
form which permits the existence of metastable gas, liquid or solid phases (EOS3).

The semi-empirical caloric model of EOS1 [12] is defined by the dependence E = E(P,p), which does not
contain information about temperature and phase states of matter. The model generalizes the well-known
Mie-Griineisen EOS for the condensed phase and contains rather complex expressions for the cold curve
(isotherm 7 =0K) and thermal part. The EOS1 model has correct asymptotic behavior at p— o
(nonrelativistic ideal Fermi gas limit) and p— 0 (classical ideal gas limit). The EOSs for aluminum and lead
used in this work are in good agreement with experimental points on shock compression and adiabatic
expansion even at tenfold expansion. Accurate representation of theoretical and experimental data gives rise
to very similar simulation results for caloric and temperature complete EOSs (see below).

The semi-empirical multi-phase EOSs (EOS2, EOS3) are based on an earlier model of Bushman [13], which
takes into account the effects of high-temperature melting and evaporation, and the possible existence of
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metastable states including negative pressure range. This multi-phase EOS consistently describes the collection
of experimental data on static and shock compression as well as adiabatic and isobaric expansion of metal.

The thermodynamic quantities were determined using a special interpolation procedure on tabular
functions f; ; = f(p;, I;), where f'is one of thermodynamic parameters (in our case, the internal energy E, the
pressure P, the Griineisen parameter y, and the adiabatic sound velocity c¢).

In the stable case (EOS2), the procedure for the calculation of thermodynamic properties using this tabular
form was described in detail in Refs. [14,15]. The density—temperature plane (p, 7) is covered with a number of
rectangular meshes (p;, 7)), i=1,..., N,j=1,..., N7, that embrace the range of densities and temperatures
appearing in the modeling. All the meshes contain the same set of isotherms but can have different sets of
isochors. The meshes are constructed so that the phase boundaries (which are the melting, evaporation, and
sublimation curves) pass only through the meshes. In such a method of construction, any point corresponding
to the stable state lies either inside or on the boundary of a triangular or rectangular cell all of whose corners
belong to the region of stability of one and the same phase state. The value of the chosen thermodynamic
parameter at an arbitrary point (p, T) is found by bilinear (in the case of rectangular cell) of linear (triangular
cell) interpolation over the corners of the cell in which this point is situated. The phase diagram of EOS?2 is
represented in Fig. 3.

To describe the properties of superheated liquid, supercooled vapor, as well as metastable crystal and
metastable solid—liquid mixture at negative pressures (EOS3), we calculate additional tables of thermodynamic
parameters in the density—temperature plane. The metastable regions are covered by rectangular meshes (X,
T)) in the (X, T) plane, where T is the same set of isotherms as in the stable case (EOS2), X is the set of relative
specific volumes determined by the boundaries of metastable regions. For example, the region of existence of
metastable vapor is limited by the binodal and spinodal lines; therefore, the X parameter for this region at a
given specific volume V' = 1/p and temperature 7 is defined as

V —Vi(T)
Vip(T) — Vi(T)

XV, T)= (6)

where Vy(T) and Vi, (T) are the specific volumes of metastable vapor at the binodal and spinodal at
temperature T (below a critical point). The thermodynamic parameters at the arbitrary point (V, T) of a
metastable region are then determined by bilinear interpolation using (X, 7) variables after V—X
transformation. The continuity of thermodynamic parameters at transition from stable to metastable region
is achieved by the same set of isotherms for meshes divided by phase boundaries.

The chosen interpolation technique provides good merging of thermodynamic surfaces along phase
boundaries and guarantees the monotonic behavior of thermodynamic parameters near phase boundaries.
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Fig. 3. Phase plane of the temperature complete stable equation of state of aluminum. Phase states are as follows: gas (1), liquid (2),
melting region (3), solid (4), and liquid—gas mixture (5). Boundary between phases (1) and (2) with the critical point (6) is conventional.
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To calculate thermodynamic properties at a given internal energy and density, we use reverse interpolation.
At first, we determine the temperature value and then compute other parameters with the help of direct
interpolation as described above.

Earlier [14-16], we have successfully applied the EOSs EOS2 and EOS3 for the simulation of electrical
explosion of thin aluminum and tungsten wires.

5. Numerical results

To clarify our results, the same scales of time, distance, and velocity in the computer 2D cylindrical
symmetry calculations are used as in the real experiment [17]. The parameters are as follows: impactor
diameter is 1.5 cm, target plate thickness is 6.35 mm and impactor velocity is 6.6 km/s. The numerical domain
was 30cm lengthwise and 7.5 cm in the radial direction. The finest computational cell size in our calculations
was 0.375 mm.

In Fig. 4, results of the laboratory experiment at 30 ps after the collision are presented.

It should be noted that the actual plane thickness differs from that apparently shown in the X-ray.

Analysis of the X-ray image highlights several interesting effects of hypervelocity ball-plate interaction. One
can see the backsplash, flared at the edges and filaments of material (possibly caused by the action of surface
tension force), streaming from fractures at the edges of the hole and ending in a ““collar” (dense ring in the
widest cross section of the debris cloud, see Fig. 4) at the rear of the cloud. Although laboratory experiment
contains information about integral mass distribution projected onto the X-ray we advisedly present the
longitudinal section of the cloud to show information about its internal structure.

A plot at 30 us of the debris cloud for a simulation using EOS1 is shown in Fig. 5. When the shock wave
reached the free surface of the plate, evaporation of lead took place in a strong rarefaction wave. Evaporated
matter formed the expanding layer of strongly rarefied gas (p~10" g/cc) moved ahead of leading shell of the
cloud. Similar rarefied gas filled the hole and internal volume of backsplash. Numerous fragments consisting
of impactor material were formed by reinforcing rarefaction waves.

Numerical modeling with EOS2 demonstrated substantial qualitative differences from EOS1 as shown in
Fig. 6. Shock wave propagation along the target plate was accompanied by intensive evaporation from its free
surfaces. Spallation did not take place (recall that only positive pressures are allowed in EOS2) and tension
zones were filled by two-phase liquid—gas mixture. Also one would not expect the plate target to experience the
intensive evaporation from free surfaces in the vicinity of the hole edges due to shock wave propagation
although this is seen in the simulation.

Fig. 4. Experimental X-ray photograph [17] of the lead-on-lead debris cloud (side view). Initially, the Pb ball had a diameter of 1.5 cm and
was traveling toward the Pb plate of 6.35 mm thickness from the left at 6.6 km/s. The front of the cloud at 30 ps is approximately 20 cm
away from the plate; the darkest regions indicate the highest densities.



M_.E. Povarnitsyn et al. | International Journal of Impact Engineering 33 (2006) 625-633 631

Fig. 5. Calculation with EOS1 for lead at 30 us. Numerous fragments form the inner structure of the cloud. Flying back jets are forming
the backsplash. Gray areas ahead of the cloud shell and inside the backsplash represent very rarefied gas at densities near 107> g/cc.

\\ . éii ’

Fig. 6. Calculation with EOS2 for lead. Phase distribution at 30 us: gas phase (1), liquid—gas mixture (2), and solid state (3).

Fig. 7. Calculation with EOS3 for lead at 30 pus. Density distribution normalized on an interval from 0.01 to 2 g/cc.

The results obtained with EOS3 (see Fig. 7) appear to be closer to those obtained with EOS2 rather than
with EOS1. Some differences were observed in the dynamics of the impactor rarefaction stage when the heated
projectile started to spall. This process was accompanied by the appearance of void zones in the metastable
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Fig. 8. Calculation with EOS1 (upper half) and EOS3 (lower half) for aluminum at 30 us. Density distribution normalized on an interval
from 10°° to 3 g/cc.

liquid phase. However, the vacuum cavities lifetime was approximately 4 us after which they were filled by
evaporated gas fraction. This situation strongly differs from that observed in the case of EOS1 where impactor
fragments existed in vacuum during the entire simulation time.

We performed additional simulations to investigate the behavior of other materials under hypervelocity
impact loading with different types of EOSs. We used aluminum impactor and target plate (instead of lead)
with initial parameters as outlined above. In this case, it was found that there was no difference observed for
numerical results obtained with EOS1 and EOS3, see Fig. 8. The reason for such behavior is the greater
evaporation energy required for aluminum.

6. Discussion

Lead is a very interesting material for the study of hypervelocity impact problems since it possesses
relatively low melting and evaporation temperatures and thus experiences phase transitions under
hypervelocity impact. For this reason, it was possible to obtain a wide variety of physical effects in
laboratory experiments. We tried to simulate the inner structure of the debris cloud and found a balance
between the processes of spallation and evaporation at very high deformation velocities. For example, spall
fracture experiments [4] with aluminum and magnesium showed steep drop in the spall strength of preheated
samples as temperatures approached the melting point. Comparison of experimental X-ray photographs with
results of numerical simulation demonstrates good agreement with the shape and size of debris cloud, flared at
the edges backsplash and even the diameter of the hole. Analysis of the numerical simulation results highlights
some effects observed in the X-ray. The effect of backsplash flare is explained by cumulation caused by
interaction of spherical and flat surfaces so that leading end of jets has different orientation in comparison
with the rest of jets.

Formation of the “collar’” in numerical simulation has been observed as in the laboratory experiments. The
“collar” consists of impactor and plate pieces, which have equal velocities after the rarefaction to zero
pressure.

Differences in the structure of clouds were observed in their internal material distribution. To obtain a
closer resemblance with experimental data, a model of crack growth should perhaps be taken into account.

7. Conclusions

The computer simulations show that cloud shape is similar to experimental images for all types of EOSs.
Agreement has been achieved for material distribution in backsplash, ‘“‘collar,” and frontal zone.
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Modeling with the thermodynamically complete metastable EOS3 gave better agreement with experimental
data. The moment of matter spallation depends on lifetimes of metastable phases; therefore, kinetic models
ought to be the part of the numerical algorithm.

These conclusions are obtained from the high-order multi-material Godunov method, and they are in good
agreement with the results observed in the real experiments [17]. In particular, the hypervelocity impact
experiments show that maximal fragmentation is observed using the caloric EOS1. We explain this fact by the
conservative value of the bulk sound speed in the vicinity of the cold curve at intermediate densities. On the
other hand, the multi-phase EOSs (EOS2, EOS3) include melting and evaporation processes and thus give
more accurate values of thermodynamic parameters over a wide range of parameters from highly compressed
matter to hot gas fraction.
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